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1 Recap of Linear Programming (LP) Theory

Lecture 2 - Tuesday, September 09

Definition 1.1: Linear Program

A linear peogram (LP) is a problem of the following form:

max cT x s.t.
Ax ≤ b

x ≥ 0
(P)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm.

There are three things we care in a linear program:

• Linear objective;
• Finite number of linear constraints;
• All constraints have non-strict inequalities.

Any linear program has one of the three possibilities: infeasible, unbounded, attains an optimal
solution.

1.1 (LP) Duality

Question 1.1. How can we give bounds on the optimal value of (P)?

Using the dual LP, which is an LP that expresses the problem of finding the best bound on optimal
value of (P).

The dual to (P) is the following:

min bT y s.t.
AT y ≥ c

y ≥ 0
(D)

Comment 1.1

The dual is essentially a linear combinations of the constraints to recreate the objective function, so we
can attain a meaningul upper bound for the objective value of the primal by minimize the new objective
function.

Exercise 1.1

Take the dual of the dual LP (D), verify that this is (P).

1.1.1 Weak Duality
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Theorem 1.1: Weak Duality

If x is feasible to (P) and y is feasible to (D), then

cT x ≤ bT y

Proof. We simply have
cT x ≤ yT Ax ≤ yT (Ax) ≤ yT b

as desired.

1.1.2 Strong Duality

Theorem 1.2: Strong Duality

(P) has optimal solution if and only if (D) has optimal solution. Moreover, x∗ and y∗ are optimal
solutions to (P) and (D) if and only if x∗ and y∗ are feasible solutions to (P) and (D) and

cT x = bT y

1.1.3 Complementary Slackness

It is often convenient to rephrase the Strong Duality as follows:

Theorem 1.3: Complementary Slackness

x∗ and y∗ are optimal solutions to (P) and (D) if and only if x∗ and y∗ are feasible solutions to (P)
and (D), and

• x∗
j ̸= 0 implies the corresponding dual constraint is tight at y∗. i.e., (AT y∗)j = cj ;

• y∗
i ̸= 0 implies the corresponding dual constraint is tight at x∗.

Comment 1.2

LP’s can be solved efficiently, i.e., there is a polytime algorithm such that given an LP (P), it determines
the outcome of (P):

• if (P) has an optimal solution, it returns the optimal solution;
• if (P) is infeasible or unbounded, it returns a certificate of that outcome.

In practice, we use the Simplex method, however, there exists LP such that the Simplex method runs
in exponential time. The first polytime algorithm for LP is the ellipsoidal method, which is hopeless to
implement in practice. Nowadays, there is another method knows is the interior point method, which
pratically runs as fast as the Simplex method.
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1.2 Geometry of LP

Feasible region of an LP is called a polyhedron. So, P ⊆ Rn is a polyhedron if it can be expressed as
{x ∈ Rn : Ax ≤ b} for some matrix A (which has a finite number of rows) and vector b.

Discovery 1.1

A polyhedron is a convex set.

Definition 1.2: Convex Combination

We say x ∈ Rn is a convex combination of points p(1), . . . , p(k) ∈ Rn if there exists λ1, . . . , λk ∈ R+

such that
k∑

i=1
λi = 1 and x =

n∑
i=1

λip
(i)

Definition 1.3: Extreme Point

An extreme point of a convex set S ⊆ Rn is a point x̂ ∈ S such that we cannot write x̂ as a convex
combination of two distinct points in S.

Discovery 1.2

A polyhedron has a finite number (maybe 0) of extreme points.

Comment 1.3

For the extreme points in polyhedron P , we can also give an algebraic characterization of the extreme
points, as well as an optimization characterization.

Theorem 1.4

Let P ⊆ Rn be a polyhedron, x̂ ∈ P is an extreme point of P if and only if there exists c ∈ Rn such
that x̂ is the unique optimal solution to

max cT x s.t. x ∈ P

Theorem 1.5

Consider the LP
max cT x s.t. x ∈ P (LP)

where P ⊆ Rn is a polyhedron. If (LP) has an optimal solution, and P has an extreme points, then
there is always an optimal solution to (LP) that is an extreme point of P .
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Comment 1.4

An optimal solution isn’t necessarily an extreme point, consider:

max 0T x s.t. 0T x ≤ 0

Definition 1.4: Convex Hull

Let S ⊆ Rn. The convex hull of S is the smallest convex set containing S.

Exercise 1.2

Show that the following

conv(S) = {x ∈ Rn : x is the convex combination of finite number of points in S}

is equivalent to the convex hull of S.

Definition 1.5: Polytope

A polytope is a bounded polyhedron.

Comment 1.5

1. A polytope is the convex hull of its extreme points;
2. P ⊆ Rn is a polytope if and only if P = conv(S) for some finite set S.
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2 Minimum Spanning Tree (MST)

Lecture 3 - Thursday, September 11

Definition 2.1: Spanning Tree

T is a spanning tree of G = (V, E) if T is a connected, acyclic subgraph of G with vertex set V .

Note 2.1

If T is a spanning tree, then

1. T is minimally connected. i.e., T − e is not connected for any e ∈ T .
2. T is maximally acyclic. i.e., T + f contains a cycle for any f /∈ T .

Lemma 2.1

Let |V | = n, TFAE:

1. T is a spanning tree;
2. T is connected with n− 1 edges;
3. T is acyclic with n− 1 edges.

Definition 2.2: Minimum Spanning Tree

Minimum spanning tree (MST) problem: Given connected, undirected graph G = (V, E) with edge
costs {ce}e∈E , find a spanning tree T of minimum total cost c(T ) :=

∑
e∈T ce.

2.1 Kruskal’s Algorithm (Greedy Algorithm)

Algorithm 2.1: Kruskal’s Algorithm

1. Enumerate the edges in increasing order of costs;
2. Initialize H = (V, ∅);
3. For each edge e = uv in sorted order, if H ∪ {e} is acyclic, update H ← H ∪ {e};
4. Return H.

Comment 2.1

Notations: For A ⊆ V , δ(A) = set of edges on boundary of A. i.e., the set {uv ∈ E : u ∈ A, v /∈ A}.
An edge set of the form δ(A) for some ∅ ≠ A ⊊ V is called a cutset of G.
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Lemma 2.2

Let T be a spanning tree, then T is a MST if and only if for any e = uv ∈ E − T , all edges f on the
unique u−v path in T have cf ≤ ce.

Proof. [=⇒]: Denote the unique u−v path in T as Tuv. SFAC that there exists f ∈ T such that cf > ce.
Consider T ′ := T − f + e, which is a spanning tree (connected, n− 1 edges) with lower cost  .
[⇐=]: Among all MSTs, choose an MST T ∗ that minimizes. Define k to be

k := |E(T ) ∩ E(T ∗)|

We wish to show that k = n− 1. SFAC that k < n− 1, i.e., T ̸= T ∗. Consider some e = uv ∈ T ∗ − T . Let
T ∗

1 , T ∗
2 be the components of (V, T ∗ − {e}). We know that there exists a different u−v path in T , and so

there exists f ∈ Tuv such that f ∈ δ(V (T ∗
1 )). We know that cf ≤ ce. Consider T ′ = T ∗ − e + f , which is a

spanning tree with
c(T ′) ≤ c(T ∗)

which implies that T ′ is also a MST. Notice, |E(T ′) ∩ E(T )| = n− 1.

Theorem 2.1

Kruskal’s Algorithm produces a MST.

Proof. Let H ← output of Kruskal. It is easy to see that H is a spanning tree: H is acyclic by construction,
and H is connected because otherwise there exists e ∈ G−H that connects the two components of H. STP
that H has the property mentioned in the above lemma. Consider e = uv ∈ E −H. Since Kruskal does not
pick e, u and v are in the same component of H when e is considered by Kruskal, and this further implies
that all edges on the u−v path in H have cost ≤ ce due to Kruskal’s order of considering edges.

2.1.1 Running Time of Kruskal’s Algorithm

Denote m =: |E| and n =: |V |.

1. Sorting m numbers: O(m log m) = O(m log n);

2. Checking if e = uv is in some component can be done efficiently, ≈ O(log n)

So the running time of the algorithm is O(m log n).

2.2 MST Polytope

How can we write a linear program that represents the MST problem?

2.2.1 LP-relaxation for MST Problem

We introduce one variable for each e ∈ E (representing whether e ∈MST ), think of this as a characteristic
vector.
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Comment 2.2

Notation: For S ⊆ V , denote E(S) = {e ⊆ S : e ∈ E}. For F ⊆ E, denote x(F ) =
∑

e∈F xe where
xF is the characteristic vector of F , which is the vector in RE whose eth coordinate is 1 if e ∈ F and 0
otherwise.

Since a spanning tree has exactly n− 1 edges, we have

x(E) = n− 1

(Recall that x is a characteristic vector of a spanning tree of (V, E)). If T is a spanning tree, then (S, T∩E(S))
is acyclic, so

|T ∩ E(S)| ≤ |S| − 1 ∀ S ⊆ V ≡ x(E(S)) ≤ |S| − 1 ∀ ∅ ̸= S ⊊ V

Definition 2.3: LP-relaxation of MST Problem

The LP-relaxation of the MST Problem is

min
∑
e∈E

cexe s.t.

x(E) = n− 1
x(E(S)) ≤ |S| − 1 ∀ ∅ ≠ S ⊊ V

x ≥ 0
(MST-P)

Discovery 2.1

Let F ⊆ E, then F is a spanning tree if and only if xF is a feasible solution to (MST-P).

Theorem 2.2

The tree H output by Kruskal is such that xH is an optimal solution to (MST-P).

Corollary 2.1

Let P = feasible region of (MST-P), then

P = conv({xT : T is a spanning tree of G})

which is called the MST polytope.

Proof. We first call
Q := conv({xT : T is a spanning tree of G})

[P ⊇ Q]: xT ∈ P for every spanning tree T implies that Q ⊆ P .
[P ⊆ Q]: P = conv(ext pts of P ). Hence STP that every extreme points of P is in Q. Let x̂ be an extreme
point of P . By theorem 1.4 there exists an objective function {ce}e∈E such that x̂ is the unique optimal
solution to (MST-P). But Kruskal runs on input {ce}e∈E produces a spanning tree H such that xH is the
optimal solution to (MST-P) (theorem 2.2), so x̂ = xH , which implies that every extreme point is of the
form xT for some spanning tree T as desired.
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2.2.2 Dual of (MST-P)

Recall the (MST-P):

min
∑
e∈E

cexe s.t.

x(E) = n− 1 ]× yV , yV free
x(E(S)) ≤ |S| − 1 ∀ ∅ ̸= S ⊊ V ]× (−yS), yS ≥ 0

x ≥ 0
(MST-P)

The sum of the two products yields us

∑
e∈E

xe

yV −
∑

∅̸=S⊊V,e∈E(S)

yS

 ≥ (n− 1)yV −
∑

S:∅̸=S⊊V

(|S| − 1)yS

Hence the dual is given as

max (n− 1)yV −
∑

S:∅̸=S⊊V

(|S| − 1)yS s.t.
yS ≥ 0 ∀ ∅ ≠ S ⊊ V

yV −
∑

S:∅̸=S⊊V,e∈E(S) yS ≤ ce ∀ e
(MST-D)

Lecture 4 - Thursday, September 18

2.2.3 Why Kruskal’s Algorithm Yields us Optimal Solution to (MST-P)

Proof of Theorem 2.2. We first define some notations to simplify our proof. Let e1, e2, . . . , en−1 be the edges
of T ∗ in increasing order of ce (with ties broken as in Kruskal). Let ci := cei , and let c0 := mine∈Ece and
let Fi := {e1, . . . ei} (so F0 = ∅). For F ⊆ E, let κ(F ) = # of components of (V, F ).

Note 2.2

• κ(Fi) = n− i since κ(K0) = n and each added edge decrements the number of components by 1.
• If F is all the edges considered by Kruskal up to and including ei, then components of (V, F ) =

components of (V, Fi).

Claim: c(T ∗) = c0(n− 1) +
∑n−1

i=1 (ci − ci−1) · κ(Fi).

To see the reason why the above equality holds, let’s expand it out:

c0(n− 1) +
n−1∑
i=1

(ci − ci−1) · κ(Fi) = c0(n− 1) + (c1 − c0)(n− 1) + · · ·+ (cn−1 − cn−2) · 1

= c1 + c2 + · · ·+ cn−1
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The expression on the right can be written as

c0(n− 1) +
n−1∑
i=1

(ci − ci−1) · κ(Fi) = c0(n− 1) +
n−1∑
i=1

(ci − ci−1) · (κ(Fi−1)− 1)

= c0(n− 1) +
n−1∑
i=1

(ci − ci−1)

n− 1−
∑

S:S∈a comp. of (V,Fi−1)

(|S| − 1)


= (n− 1)

[
c0 +

n−1∑
i=1

(ci − ci−1)
]

+
∑

∅̸=S⊊V

(|S| − 1)
∑

i∈{1,...,n−1}
S in a comp. of (V, Fi−1)

(ci − ci−1)

Defining

y∗
V := c0 +

n−1∑
i=1

(ci − ci−1) = cn−1

and
y∗

S =
∑

i∈{1,...,n−1}
S in a comp. of (V, Fi−1)

(ci − ci−1) ∀ ∅ ≠ S ⊊ V

we get c(T ∗) = dual objective value of y∗.

Note 2.3

If ∅ ≠ S ⊊ V is such that S is not a component of (V, Fi−1) for any i ∈ {1, . . . , n− 1}, then y∗
S = 0.

If we show y∗ is dual feasible, then we have shown that xT ∗
, y∗ are optimal for (MST-P) and (MST-D)

respectively. Hence we now want to show y∗’s feasibility.
[Proof one, Primal-Dual interpretation of Kruskal, which will lead to y∗]:

1. Initialize: F0 ← ∅, i ← 1 AND y∗
V = t := c0 = mine∈Ece, where we call t as “time”, y∗

S ← 0 for all
other sets S.

2. Maintain Invariant: For all e ∈ δ(S), where S is a component of (V, Fi−1), LHS of the second constraint
of (MST-D) = t ≤ ce.

3. Update: Let ei be the minimum cost edge on boundary of some component of (V, Ei−1), we update
the following:

• Fi ← Fi−1 ∪ {ei};

• y∗
V ← y∗

V + (cei
− t);

• y∗
S ← y∗

S + (cei − t) for all S : component of (V, Fi−1);

• t← t + (cei
− t) = cei

.

4. i← i + 1.

CONTINUE AS ABOVE until we have a spanning tree. i.e., (V, Fi) is connected.
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Exercise 2.1

Verify that the y∗ at the end of the above process is precisely the y∗ = (y∗
V , y∗

S) we defined earlier.

[Proof two, explicitly verifying dual feasibility]: Consider an edge e, let i be the first iteration
j that e is internal to a component of (V, Fj). Consider the sets S with y∗

S ̸= 0 that contain e:

• V , components of (V, Fi), (V, Fi+1), . . . , (V, Fn−1) that contain e.

Hence the LHS of the second constraint of (MST-D) for e is

y∗
V −

n−2∑
j=i

(cj+1 − cj) = cn−1 −
n−2∑
j=i

(cj+1 − cj) = ci = cei

which meets the constraint cei
≤ ce since e and ei are on the boundary of some components of (V, Fℓ)

precisely for ℓ = 1, . . . , i− 1 and ei was considered by Kruskal’s algorithm prior ro e. This proves y∗’s dual
feasibility.
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3 Matroids and Greedy Algorithm

Question 3.1.

The question we want to ask is “When does a greedy algorithm like Kruskal’s algorithm work”?

1. Max-weight Matching.

2. Min-cost Arborescence: Here is an example: For the following directed graph (leftmost), it has
precisely three arborescences, drawn to the right of it:

A

B

C

A

B

C

A

B

C

A

B

C

Despite the fact that this problem is similar to the Minimum Spanning Tree problem, greedy algorithm
does not work at all.

Lecture 5 - Tuesday, September 23

Definition 3.1: Independence System

Let U be a finite set and I ⊆ 2U a collection of subsets of U . We say that (U, I) is an independence
system if

(P0) ∅ ∈ I;

(P1) If A ∈ I and B ⊆ A, then B ∈ I.

Sets in I are called independent sets.

3.1 Max-weight Independent Set (MWIS) Problem

The problem asks that, given weights {we}e∈U , find a set S ∈ I that has the maximum total weights, where

w(S) =
∑
s∈S

ws

3.1.1 Greedy Algorithm for MWIS

1 Start with J ← ∅ ;
2 while ∃e /∈ J such that we > 0 and J ∪ {e} ∈ I do
3 Choose such an e with maximum we ;
4 Set J ← J ∪ {e} ;

5 Return J ;
Algorithm 1: Greedy Algorithm for MWIS

14



Comment 3.1

Greedy Algorithm does not always return a max-weight independent set for an independence system.

3.2 Matroid

Definition 3.2: Matroid

The tuple (U, I) is a matroid if it is an independence system and (P2) for every A ⊆ U , every
inclusion-wise maximal independent set contained in A has the same size.

Definition 3.3: Basis

For A ⊆ U , a maximal independent set contained in A is called a basis of A. If A = U , we will just
call it basis.

Definition 3.4: Rank

We define the rank function r : 2U → Z+ as

r(A) := max{|B| : B ⊆ A, B ∈ I}

which is the max-size of independent set in A.

3.2.1 Matroids Examples

Example 3.1: Forests of a graph, aka Graphic Matroid or Cyclic Matroid

Given a graph G = (V, E), we take U = E and I = {F ⊆ E : F is acyclic}. We claim that (U, I) is a
matroid.

Proof. Clearly ∅ ∈ I, and if A ∈ I, then for B ⊆ A, B ∈ I. Hence it suffices to prove (P2). Consider
A ⊆ E, recall that

κ(A) = # of components of (V, A)

To obtain a maximal acyclic set of edges contained in A, we must choose a spanning tree from each
component of A, so the size of such a set is

κ(A)∑
i=1

= (|Si| − 1) = |V | − κ(A) = n− κ(A)

where S1, . . . , Sκ(A) ⊆ V are the components of (V, A). Notice how the size of the maximal elements
in A does not depend on the specific element itself, we have verified (P2).

15



Example 3.2: A non-example instead

Given a grah G = (V, E), take U = E and I = {M ⊆ E : M is a matching}. Then (U, I) is an
independent system, but not a matroid.

Example 3.3: Uniform Matroid

Let U be any finite set, and k ≥ 0 an integer. Then M = (U, I = {A ⊆ U : |A| ≤ k}) is a matroid.
This is called a uniform matroid.

Proof. (P0) and (P1) clearly holds. For (P2), a basis of A ⊆ U has size min{k, |A|} := r(A).

Example 3.4: Linear Matroid

Given a m × n matrix M over a field F (i.e., n vectors in Fm). Take U = [n] and I = {A ⊆ U :
columns of M corres. to A are lin. ind.}. Then (U, I) is a matroid known as the linear matroid.

Proof. (P0) and (P1) clearly holds. (P2) follows by linear algebra.

3.2.2 Rado ’57, Edmonds ’71

Theorem 3.1: Rado ’57, Edmonds ’71

Let M = (U, I) be an independence system. Then the greedy algorithm returns a MWIS for all
w ∈ R|U | if and only if M is a matroid.

Proof. [=⇒]: We need to show that (P2) holds. Suppose for a contradiction that (P2) does not hold. Then
there exists A ⊆ U for which J1, J2 two bases of A having different sizes |J1| < |J2|.

J1 J2

J1 \ J2 J1 ∩ J2 J2 \ J1

1 + ε 1

As shown in the picture above, consider weight function we:

we =


1 + ε e ∈ J1

1 e ∈ J2 − J1

0 otherwise

16



for ε > 0. Then, (verify) the greedy algorithm will return J1, but for sufficiently small ε > 0, we have

|J1|(1 + ε) = w(J1) < w(J2) = (1 + ε)|J1 ∩ J2|+ |J2 − J1|

a contradiction.
[⇐=]: We will prove something stronger. Let’s look at the LP-relaxation for MWIS. The variable of our
problem will be

xe ∀e ∈ U

i.e., xe = 1 if e ∈ the set or 0 otherwise.

max
∑
e∈U

wexe

subject to x(A) ≤ r(A) ∀A ⊆ U

x ≥ 0 (P)

Note 3.1

Note that the constraint x(A) ≤ r(A) ∀A ⊆ U implies xe ≤ 1 for all e ∈ U .

Exercise 3.1

Let J ⊆ U , then x = χJ is feasible to (P) if and only if J ∈ I.

Solution. [=⇒]: If J /∈ I, so we know that

r(J) := max{|A| : A ⊆ J, A ∈ I} < x(J)

which shows that J is in fact not feasible, a contradiction.
[⇐=]: Since J ∈ I, so for all J ′ ⊆ J , J ′ ∈ I. Therefore, for all A ⊆ U , if A ⊆ J , then x(A) = |A| =
r(A); else if J ⊆ A, then x(J) ≤ r(A) indeed holds.

Now we use the next theorem.

Theorem 3.2

Let J∗ be the output of greedy algorithm for (U, I) with weights {we}e∈U , then χJ∗ is the optimal
solution to (P).

Proof. Take the dual of the LP:

min
∑

A⊆U

yA · r(A)

subject to
∑

A⊆U,e∈A

yA ≥ we ∀e ∈ U (1)

yA ≥ 0 ∀A ⊆ U

17



Let |U | = m. Order the elements so that

we1 ≥ we2 ≥ · · · ≥ wep
≥ 0 ≥ wep+1 ≥ · · · ≥ wem

Let Ai = {e1, . . . , ei}. Define

y∗
Ai

=

wei − wei+1 i = 1, . . . , p

wep
otherwise

and y∗
A = 0 for all other A ⊆ U . We now show its dual feasibility. It is clear that y∗ ≥ 0. It is also clear

that (1) holds if e ∈ {ep+1, . . . , em} since we ≤ 0 for all such e’s. Suppose e = ei for i ∈ [p]. Then

∑
A⊆U,e∈A

y∗
A =

p∑
j=i

y∗
Aj

= wei
= we (*)

Lecture 6 - Thursday, September 25

Now we define x∗ = χJ∗ , and we wish to show that x∗ and y∗ satisfy the Complementary Slackness
conditions.

[Suppose x∗
e > 0] This means that e = ei for some i ∈ [p], and so (*) shows dual constraint for e is tight.

[Suppose y∗
A > 0] This means A = Ai for some i ∈ [p], wei

> wei+1 (note that this tells us that Ai = {e ∈ U : we ≥ wei
}),

and wei
> 0. Our claim is that J∗ ∩Ai is a basis of Ai.

SFAC that there exists f ∈ Ai − J∗ such that (J∗ ∩ Ai) ∪ {f} ∈ I. Consider the point when Greedy
considered f , at that point we have some S ∈ I such that S ⊆ J∗ ∩Ai. Hence if (J∗ ∩Ai) ∪ {f} ∈ I,
then S∪{f} ⊆ (J∗∩Ai)∪{f} ∈ I, and so Greedy should have added f , which yields us a contradiction.
Now we use the fact that (U, I) is a matroid to show that the corresponding constraint in the primal
is tight.

Exercise 3.2

Adapt Greedy to find the maximum weight basis. Show that if (U, I) is a matroid, then the adapted
Greedy returns an optimal solution to the LP:

max
∑
e∈U

wexe

subject to x(A) ≤ r(A) ∀A ⊆ U

x ≥ 0 (P’)

x(U) = r(U)

So the feasible region of (P’) is conv({xB : B a basis of (U, I)}).

18



Corollary 3.1

The feasible region for (P) is
conv({xJ : J ∈ I})

when (U, I) is a matroid. This polytope is called the matroid polytope.

Proof. Left as an exercise.

3.2.3 Greedy on Independence Systems

For an arbitrary independence system (U, I), does Greedy have any performance guarantee? The answer is
yes. Define ρ : 2U → R as

ρ(A) := min{|B| : B is a basis of A}

and define rank-quotient q as
q(U, I) := minA⊆U

ρ(A)
r(A)

Note 3.2

Note that q(U, I) ≤ 1, where equality holds if and only if (U, I) is a matroid.

See detail in A1: Greedy returns an independent set J such that

w(J) ≥ OPTMW IS · q(U, I)

3.2.4 Applications

One simple application would be matching: Given a graph G = (V, E) and let U = E, I = {M ⊆ E :
M is a matching}. Our claim is that

q(U, I) ≥ 1
2

Proof. Consider A ⊆ U with ρ(A) < r(A). Let M1, M2 be two maximal matchings of A with |M1| < |M2|.
Let

V1 = {v : v is some end-point of some edge in M1}

Since M1 is maximal, for all e ∈M2 −M1, we know that e has an end-point in V1, and so all egdes e ∈M2

have an end-point in V1. Since M2 is a matching, no two egdes in M2 can share an end-point, so

|M2| ≤ |V1| = 2|M1|

3.2.5 Running Time of Greedy, and Representation of Matroids

Matroid (U, I) specified via an independence oracle: takes a set A ⊆ U and answers

Y ES if A ∈ I and NO if A /∈ I
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Each call to independence oracle is treated as an elementary operation, and is counted running time. As a
result, let m = |U |, Greedy Algorithm has O(m log m) (used for sorting) running time, and the number of
calls to independence oracle is in O(m).

Another oracle could be the rank oracle: given A ⊆ U , it outputs r(A).

Note 3.3

For a matroid (U, I), independence oracle and rank oracle are polynomially equivalent, meaning we
can get one oracle using polynomially many calls to another oracle.

3.3 Polymatroids

Definition 3.5: Submodular

Let U be a finite set, a function f : 2U → R is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B)

for all A, B ⊆ U .

Exercise 3.3

Another equivalent definition for the above is: For all A ⊆ B ⊆ U , for all e /∈ B

f(B ∪ {e})− f(B) ≤ f(A ∪ {e})− f(A)

Proof. [=⇒] Assume f is submodular. Take any A ⊆ B ⊆ U and e /∈ B. Apply submodularity to the pair
of sets A1 = A ∪ {e} and B1 = B, we obtain

f(A ∪ {e}) + f(B) ≥ f(A1 ∩B1︸ ︷︷ ︸
=A

) + f(A1 ∪B1︸ ︷︷ ︸
=B∪{e}

).

since A ⊆ B and e /∈ B, Therefore

f(A ∪ {e}) + f(B) ≥ f(A) + f(B ∪ {e}).

Rearranging gives
f(B ∪ {e})− f(B) ≤ f(A ∪ {e})− f(A),

[⇐=] To be finished.

Example 3.5

Given a graph G = (V, E). Define f : 2V → R by f(S) = |δ(S)|. Then f is submodular.
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Example 3.6

If (U, I) is a matroid, then its rank function is submodular.

Definition 3.6: Polymatroid

Let f : 2U → R be submodular with f(A) ≥ 0 for all A ⊆ U . Then the polytope

Pf : {x ∈ RU : x(A) ≤ f(A) ∀A ⊆ U, x ≥ 0}

is called a polymatroid defined by f . When f is the rank function of a matroid, this is the matroid
polytope.

Note 3.4

We may assume that f is monotone, i.e., if A ⊆ B, then f(A) ≤ f(B).

Proof. For any A ⊆ B, then
x(A) ≤ x(B) ≤ f(B)

for any x ∈ Pf . Thus we can define g(A) := minB⊇Af(B), and then we have

x(A) ≤ g(A) ∀ A ⊆ U

hence Pf = Pg and (exercise) g is submodular and monotone.

3.3.1 Greedy Algorithm on Polymatroids

Consider the problem
max wT x s.t. x ∈ Pf (MW-Pf )

where f is non-negative, submodular, and monotone. Our claim is that Greedy algorithm can be extended
to solve (MW-Pf ).

1 Sort elements in decreasing order ;
2 Start with x∗ ← 0 ;
3 Considering elements in sorted order, increment x∗

ei
as much as possible while maintaining feasibility

x∗
ei
← f({e1, . . . , ei})− f({e1, . . . , ei−1}) ∀ i = 1, . . . , m := |U |

Algorithm 2: Greedy Algorithm for (MW-Pf )

Comment 3.2

We can show that
• x∗ is the optimal solution to (MW-Pf );
• If f : 2U → Z+, then all extreme points of Pf are integral.
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3.4 Matroid Construction

Lecture 7 - Tuesday, September 30

Let M = (U, I) be a matroid. We have the following construction tools:

1. Deletion: Let B ⊆ U , we define

M ′ = (U ′ = U −B, I ′ = {J ⊆ U ′ : J ∈ I} = {J −B : J ∈ I})

Exercise 3.4

Show that M ′ is a matroid (obtained by deleting B).

Proof. (P0) and (P1) are pretty clear. To show that the independence system is a matroid, we can
show the exchange property.

2. Truncation: Given integer k ≥ 0, define

M ′ = (U, I ′ = {J ∈ I : |J | ≤ k})

Exercise 3.5

Show that M ′ is still a matroid.

Proof. Again, (P0) and (P1) clearly holds. To show it is a matroid, we can then show exchange
property as well.

3. Disjoint Union: Let Mj = (Uj , Ij), j = 1, . . . , k be matroids with rank functions rj . Define the
disjoint union of Mj ’s M ′ = M1 ⊕ · · · ⊕Mk as

M ′ =

U ′ =
⋃
j

Uj , I ′ = {A ⊆ U ′ : A ∩ Uj ∈ Ij ∀j}


Note that each Uj is necessarily defined over distinct elements.

Exercise 3.6

We can verify that M ′ satisfies (P0) and (P1). For (P2), we can infer that M ′ has rank function
r′ defined as

r′(A) :=
k∑

j=1
rj(A ∩ Uj)

Comment 3.3

Notation: We write

M–{independent, basis} ≡ {independent, basis} in matroid M
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Example 3.7: (Generalized) Partition Matroid

Let U be a finite set, and S1, . . . , Sk be a partition of U . Let b1, . . . , bk be non-negative integers.
Consider

M = (U, I = {A ⊆ U : |A ∩ Sj | ≤ bj ∀j})

We can verify that M is a matroid, which is known as the generalized partition matroid.

Proof of M defined as above is a matroid. M is the disjoint union of Mj = (Sj , Ij), where Ij = {X ⊆ Sj :
|X| ≤ bj}. Each Mj is a uniform matriod, so M is a matroid as a result of the matroid construction.

4. Contraction: Let B ⊆ U , and let J be an M -basis of B. Define

M ′ = (U ′ = U −B, I ′ = {J ′ ⊆ U ′ : J ′ ∪ J ∈ I})

u1 u2 u3 u4

v1 v2 v3 v4

e1

e2

Original graph

contract e1 and e2

u1 u4

v1 v3 v4

After contraction

Theorem 3.3

M ′, also denoted as M/B, is a matroid (matroid obtained by contracting B), and it does not
depend on choice of J . Moreover, the rank function of M ′ is given by r′ defined as

r′(A) := r(A ∪B)− r(B)

where A ⊆ U ′ = U −B.

Proof. Recall that the rank function of an independence system completely defines the independence
system. Now we verify that M ′ is a matroid:

(P0) We have ∅ ∈ I ′ since J ∈ I;

(P1) A ∈ I ′, X ⊆ A, then X ∪ J ⊆ A ∪ J and A ∪ J ∈ I, so X ∪ J ∈ I, and hence X ∈ I ′.

(P2) Let A ⊆ U −B, and J ′ be a M ′-basis of A, we wish to show that |J ′| = r′(A) (this implies (P2)
and shows that M ′ does not depend on choice of J).
Claim: J ′ ∪ J is an M -basis of A ∪B.
Proof of claim: Consider e ∈ A ∪B − (J ∪ J ′). Suppose J ∪ J ′ ∪ {e} ∈ I,

• If e ∈ A, then (J ′ ∪{e})∪J ∈ I, which implies that J ′ ∪{e} ∈ I ′, contradicting the fact that
J ′ is an M ′ basis of A.

• If e ∈ B, then J ∪ {e} ⊆ J ∪ J ′ ∪ {e}, so J ∪ {e} ∈ I, contradicting the fact that J is an
M -basis of B.

Hence |J ′| = |J ∪ J ′| − |J ′|, which by claim = r(A ∪B)− r(B) = r′(A).

23



5. Duality: Let M = (U, I) be a matroid with rank function r, we define

M∗ = (U, I∗ = {J ⊆ U : U − J contains an M -basis})
Theorem 3.4

M∗ is a matroid, called the dual matroid.

Proof. (P0) ∅ ∈ I∗ since U contains an M -basis;
(P1) A ∈ I∗ and B ⊆ A, then U −A ⊆ U −B, and if U −A contains a M -basis then so does U −B.
(P2) Let A ⊆ U , and let J∗ be an M∗-basis of A. Hence J∗ ∈ I∗ implies that U − J∗ contains an

M -basis (r(U − J∗) = r(U)). Moreover, because J∗ is a M∗-basis (i.e, J∗ ∪ {e} /∈ I∗ for all
e ∈ A− J∗), we have that every M -basis in U − J∗ must contain all of A− J∗. We can construct
a M -basis in U −J∗ as follows: Start with a basis of U −A, and extend it to a basis B of U −J∗,
which is a basis of U , and so

r(U) = |B| = |B ∩A|︸ ︷︷ ︸
|A|−|J∗|

+ |B −A|︸ ︷︷ ︸
r(U−A)

⇒ |J∗| = |A|+ r(U −A)− r(U)

which is the rank function of M∗, proving (P2).

Example 3.8: Cool Application of Duality Matroid

Let G = (V, E) be a planar graph. We can associate another graph G∗ = (V ∗, E∗), called the
planar dual of G, as follows: There is a vertex in V ∗ for every face of G, and an edge e = u∗v∗ ∈ E∗

if the two faces corresponding to u∗ and v∗ share an edge. We now have the following theorem:

Theorem 3.5

Graphic matroid MG∗ of G∗ is the dual of graphic matrioid MG of G. i.e., MG∗ = (MG)∗.

Proof. We observe that every cut in G corresponds to a cycle in G∗, and every cycle in G yields a cut
in G∗. Here is a simple example for the visual:

a b

cd

e

G

f1

f2

f3

f∞

f4

G∗
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Therefore, we have the following equivalent statements (this is a sketch of the proof, we will assume
that the original graph G is connected)

A ∈ IMG∗ ⇐⇒ A does not contain a cycle in G∗

⇐⇒ A does not contain a cut of G

⇐⇒ ∀S ⊆ V, δ(S)−A ̸= ∅
⇐⇒ E −A is connected ⇐⇒ A ∈ I(MG)∗

Lecture 8 - Thursday, October 02

Definition 3.7: Circuit and Cut

Let M = (U, I) be a matroid.

• A set C ⊆ U is called a circuit of M if C is a minimal dependent set;
• A set C ⊆ U is called a cut of M if C is a minimal set that intersets every basis of M .

Example 3.9

In a graphic matroid, a circuit is a cycle, and a cut is just a cut.

Theorem 3.6

Let M = (U, I) be a matroid and B ⊆ U .

1. (M∗)∗ = M ;

2. (M \B)∗ = M∗/B (deletion in M followed by dual ≡ dual followed by contraction);

3. B is a circuit of M if and only if B is a cut of M∗.

4. B is a cut of M if and only if B is a circuit of M∗.

Proof. Notice that part (4) follows directly from part (1) and (3). Here we provide the proof for part (1):
Let r be the rank function of M . Let A ⊆ U , then

r(M∗)∗(A) = |A|+ rM∗(U −A)− rM∗(U)
= |A|+ (|U −A|+ r(U − (U −A))− r(U))− (|U |+ r(U − U)− r(U))
= r(A)

and so (M∗)∗ = M .
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3.5 Matroid Intersection

Given two matroids M1 = (U, I1) and M2 = (U, I2), we wish to find a max-size set that is independent in
both M1 and M2. i.e.,

maxJ∈I1∩I2 |J |

More generally, given {we}e∈U , we wish to find a max-weight common independent set:

maxJ∈I1∩I2w(J)

We first start with two applications:

3.5.1 Two Applications

Biaprtite Matching Given a bipartite graph G = (L∪R, E), we wish to find a maxmimum-size matching.

Note 3.5

Note that F ⊆ E is a matching in G if and only if F is independent in M1 = (E, I1 = {J ⊆ E :
|J ∩ δ(v)| ≤ 1 ∀v ∈ L}) and M2 = (E, I2 = {J ⊆ E : |J ∩ δ(v)| ≤ 1 ∀v ∈ R}).

Comment 3.4
M1 and M2 are partition matroids since G is bipartite.

Branchings and Arborescences Given a directed graph D = (V, A), a set F ⊆ A is a branching if

1. undirected version (F but we forget about the directions) of F is a forest;
2. Every node has indegree at most 1.

In other words, this is just a directed analogue of forest.

Note 3.6

A branching with n− 1 edges is the same as a spanning tree (viewed as a undirected graph). Moreover,
every node except the special “root” node has in-degree = 1, while the “root” has in-degree = 0.

Defining M1 = (A, I1) as the graphic matroid of the undirected version of D, and M2 = (A, I2 =
{J ⊆ A : |J ∩ δin(v)| ≤ 1 ∀ v ∈ V }). Now, F is a branching if and only if F ∈ I1 ∩ I2.

Discovery 3.1

We have
Branching with n− 1 edges︸ ︷︷ ︸

Arborescence

≡ basis of M1 that is independent in M2

assuming undirected version of D is connected.
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3.5.2 Min-max Formula for Matroid Intersection (Matroid Intersection Theorem)

Let M1 = (U, I2) and M2 = (U, I2) be two matroids with rank functions r1 and r2 respectively.
Let A and U −A be a partition of U , and let J ∈ I1 ∩ I2. Now we have

|J | = |J ∩A|︸ ︷︷ ︸
∈I1

+ |J ∩ (U −A)|︸ ︷︷ ︸
∈I2

≤ r1(A) + r2(U −A)

This inequality holds for all partitions A, U −A of U . Hence

max {|J | : J ∈ I1 ∩ I2} ≤ minA⊆U {r1(A) + r2(U −A)}

Theorem 3.7: Edmonds 1971, Matroid Intersection Theorem

Let M1 = (U, I2) and M2 = (U, I2) be two matroids with rank functions r1 and r2 respectively,

max {|J | : J ∈ I1 ∩ I2} = minA⊆U {r1(A) + r2(U −A)} (MIT)

Comment 3.5

We will have two proofs for the above theorem.

Proof 1 of Theorem 3.7. We have shown that

max {|J | : J ∈ I1 ∩ I2} ≤ minA⊆U {r1(A) + r2(U −A)}

Hence we focus on showing

minA⊆U {r1(A) + r2(U −A)} ≤ max {|J | : J ∈ I1 ∩ I2}

We prove by induction on the size of U . For the base case, we have |U | = 0, which is a trivial case. Suppose
the statement holds for |U | ≥ 1 and let k := minA⊆U {r1(A) + r2(U −A)}.
[Case 1]: Suppose for all e ∈ U , {e} /∈ I1 or {e} /∈ I2, then k = 0, since we can take

A = {e ∈ U : r1(e) = 0}

[Case 2]: There exists some e ∈ U such that {e} ∈ I1 ∩ I2. Now we have two subcases:

1. Let Mdel
1 = M1 − {e} and Mdel

2 = M2 − {e}. Let U ′ = U − {e}, so |U ′| < |U |. Define kdel to be the
RHS of (MIT) for Mdel

1 and Mdel
2 . If kdel = k, then by induction hypothesis, we have some J who is

both Mdel
1 -independent and Mdel

2 -independent such that

|J | ≥ kdel = k

2. Let M cont
1 = M1/{e} and M cont

2 = M2/{e}, and let kcont be the RHS of (MIT) for M cont
1 and M cont

2 .
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If kcont ≥ k − 1, then by the induction hypothesis, there exists J ⊆ U ′ = U − {e} such that

J ∈ I(M cont
1 ) ∩ I(M cont

2 ) =⇒ J ∪ {e} ∈ I1 ∩ I2

and so |J | ≥ kcont = k − 1, which further implies |J ∩ {e}| ≥ k

Now, suppose kdel ≤ k − 1 and kcont ≤ k − 2.

U

A′ B′

A′′

B′′

e

The first inequality implies that there exists a partition A′, B′ of U ′ = U − {e} such that

r1(A′) + r2(B′) = kdel ≤ k − 1

and the second inequality implies that there exists a partition A′′, B′′ of U ′ such that

r1(A′′ ∪ {e})− r1({e})︸ ︷︷ ︸
r(Mcont

1 )

+ r2(B′′ ∪ {e})− r2({e})︸ ︷︷ ︸
r(Mcont

2 )

≤ k − 2

Adding the two inequalities we obtain[
r1(A′) + r1(A′′ ∪ {e})

]
+
[
r2(B′) + r2(B′′ ∪ {e})

]
≤ 2k − 1 (1)

Recall that r1 and r2 are submodular. By submodularity,

r1(A′) + r1(A′′ ∪ {e}) ≥ r1(A′ ∩ (A′′ ∪ {e})) + r1(A′ ∪ (A′′ ∪ {e})) (2)

r2(B′) + r2(B′′ ∪ {e}) ≥ r2(B′ ∩ (B′′ ∪ {e})) + r2(B′ ∪ (B′′ ∪ {e})) (3)

Now, (1), (2), and (3) yields us[
r1(A′ ∩ (A′′ ∪ {e})) + r2(B′ ∪ (B′′ ∪ {e}))

]
+
[
r1(A′ ∪ (A′′ ∪ {e})) + r2(B′ ∩ (B′′ ∪ {e}))

]
≤ 2k − 1

Each of which is a partition of U (see the above picture for a visualization), so there exists some partition
S, T ⊆ U such that r1(S) + r2(T ) < k, which is a contradiction.

Lecture 9 - Tuesday, October 07
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3.5.3 Three Applications of Matroid Intersection Theorem

Here we introduce some of the applications of the Matroid Intersection Theorem.

Application 1. König’s Theorem

Definition 3.8: Cover

Given a graph G = (V, E). A set C ⊆ V is called a (vertex) cover of G if for all e = uv ∈ E, u ∈ C

(inclusive) or v ∈ C.

Theorem 3.8: König’s Theorem

Let G = (L ∪R, E) be a bipartite graph. Then

max{|F | : F ⊆ E is a matching} = min{|C| : C ⊆ V is a vertex cover}

Proof. Let M1 = (E, I1 = {J ⊆ E : |δ(v) ∩ J | ≤ 1 ∀v ∈ L}) and M2 = (E, I2 = {J ⊆ E : |δ(v) ∩ J | ≤
1 ∀v ∈ R}), then

F is a matching ⇐⇒ F ∈ I1 ∩ I2

Hence by the Matroid Intersection Theorem 3.7,

max{|F | : F is a matching} = min{r1(A) + r2(E −A) : A ⊆ E}

where r1(A) = | {v ∈ L : δ(v) ∩A ̸= ∅}︸ ︷︷ ︸
=: S1

|, and r2(E −A) = | {v ∈ R : δ(v) ∩ (E −A) ̸= ∅}︸ ︷︷ ︸
=: S2

|.

Here is an picture for the sake of illustration:

L

R

A

E −A

Note 3.7

Note that the union of the two sets, call them S1 ∪ S2, is a vertex cover of G. Since for all uv ∈ E,
u ∈ L and v ∈ R, and if uv ∈ A, then u ∈ S1, otherwise v ∈ S2.

Hence there exists a minimizer A ⊆ E such that r1(A) + r2(E − A) = |C| for some vertex cover C,
so the equality in the theorem holds.

For the above example, we have the following matching and vertex cover (both of size 4):

L

R
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Application 2. Orientations and Hakimi’s Theorem Let G = (V, E) be an undirected graph and let
bv ≥ 0 integers associated to all v ∈ V .

Definition 3.9: Orientation

An orientation of G means to direct every edge of G to obtain a digraph.

Theorem 3.9: Hakimi’s Theorem

G has an orientation where every v ∈ V has ≤ bv incoming edges, we call this graph G has b-orientation,
if and only if

|E(S)| ≤ b(S) :=
∑
v∈S

bv ∀ S ⊆ V

v1

v2

v3

v4 v5

v6

bv1 = 1

bv2 = 3

bv3 = 1

bv4 = 1
bv5 = 2

bv6 = 1

v1

v2

v3

v4 v5

v6

Comment 3.6

Easy to notice that the inequality condition is necessary. This is because the sum of bvs is the total
budget we have, which shouldn’t be less than the edges we have within those vertices.

Proof. Define Z to be
Z := {(u, v), (v, u) : uv ∈ E}

Hence, an orientation means that we have to choose exactly one of (u, v) and (v, u) for all uv ∈ E. Define
partition matroid

M1 = (Z, I1 = {J ⊆ Z : |J ∩ {(u, v), (v, u)}| ≤ 1 ∀uv ∈ E})

Encode in-degree constraint via another partition matroid:

M2 = (Z, I2 = {J ⊆ Z : |δin(v) ∩ J | ≤ bv ∀v ∈ V })

Hence
J ⊆ Z is a b-orientation of G ⇐⇒ J ∈ I1 ∩ I2 and |J | = |E|

Such a J must be a basis of M1, hence a max-size common independent set. So G has a b-orientation if and
only if max{|J | : J ∈ I1 ∩ I2} = |E|. By Matroid Intersection Theorem 3.7, G has a b-orientation if and
only if min{r1(A) + r2(Z −A) : A ⊆ Z}︸ ︷︷ ︸

=: α

= |E|.
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We claim that there exists a minimizer A such that for all v ∈ V ,[
δin(v) ∩ (Z −A) = ∅

]
OR

[
δin(v) ⊆ (Z −A) and |δin(v) ∩ (Z −A)| ≥ bv

]
Let x = |δin(v) ∩ (Z −A)|. If 0 < x < bv, then taking A′ = A ∪ δin(v), we get

r1(A′) ≤ r1(A) + x

r2(Z −A′) = r2(Z −A)− x

If x ≥ bv, but x < |δin(v)|, then taking A′′ = A− δin(v) gives

r1(A′′) ≤ r1(A)

r2(Z −A′′) ≤ r2(Z −A)

Hence our claim holds. By the claim, there exists a minimizer A such that

Z −A =
⋃
v∈S

δin(v)

for some S ⊆ V , and |δin(v)| ≥ bv for all v ∈ S, so

r2(Z −A) = b(s), and r1(A) = r1

(⋃
v /∈S

δin(v)
)

= |E − E(S)|

so α ≥ min{b(S) + |E| − |E(S)| : S ⊆ V }

In fact, equality holds for the above inequality. This means that G has a b-orientation if and only if for all
S ⊆ V ,

b(S) + |E| − |E(S)| ≥ |E|

which is equivalent to saying b(S) ≥ |E(S)| for all S ⊆ V .
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Application 3. Matroid Partition Let Mj = (U, Ij) for all j = 1, . . . , k be k matroids.

Definition 3.10: Partitionable

We say that J ⊆ U is partitionable with respect to (M1, . . . , Mk) if there exists a partition J1∪· · ·∪Jk

of J such that Jr ∈ Ir for all r.

Definition 3.11: Matroid Partition Problem

The Matroid Partition Problem asks us to find a max-size partitionable set.

Comment 3.7

The union being disjoint is not the crucial part but covering the entire J is. As we can always use
heredity to shrink each subset down to make them disjoint.

Theorem 3.10: Edmonds & Fulkerson, 1965; Rado, 1942

We have

max{|J | : J is partitionable} = min

|U −A|+
k∑

j=1
rj(A) : A ⊆ U


where r1, . . . , rk are rank functions of M1, . . . , Mk respectively.

Proof.

Comment 3.8

Here we give an idea of the proof. We create k disjoint copies U1, . . . , Uk of U and view Mj as a matroid
over Uj . We denote Ce to be the set of all copies of e for every e ∈ U .

Ce

...

M1

M2

Mk−1

Mk

I1

I2

Ik−1

Ik

Let M ′
1 be the disjoint union of M1, . . . , Mk, so

M ′
1 = (U ′ = U1 ∪ · · · ∪ Uk, I ′

1)
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We also define
M ′

2 = (U ′, I ′
2 = {J ′ ⊆ U ′ : |J ′ ∩ Ce| ≤ 1 ∀e ∈ U})

Therefore, J is partitionable with partition (J1, . . . , Jk) if and only if disjoint union of J ′
rs for all r lies in

I ′
1 ∩ I ′

2. Let r′
1 and r′

2 be the rank functions of M ′
1 and M ′

2 respectively. Hence

max{|J | : J partitionable} = min{r′
1(B′) + r′

2(U ′ −B′) : B′ ⊆ U ′}︸ ︷︷ ︸
=: α

where we know that

r′
1(B′) =

k∑
j=1

rj(B′ ∩ Uj)

r′
2(U ′ −B′) = |{e ∈ U : (U ′ −B′) ∩ Ce ̸= ∅}|

From the same kind of argument as in the Hakimi’s Theorem 3.9, there exists a minimizer B′ such that[
(U ′ −B′) ∩ Ce = ∅

]
OR

[
U ′ −B′ ⊇ Ce

]
∀e ∈ U

B′ U ′ −B′

M1

M2

Mk−1

Mk

I1

I2

Ik−1

Ik

Equivalently, B′ =
⋃

e∈A

Ce for some A ⊆ U . Then r′
1(B′) =

∑k
j=1 rj(A) and r′

2(U ′ − B′) = |U − A|. Hence

α is exactly the expression we wanted.

33



3.5.4 Algorithm for (unweighted) Matroid Intersection and its Runtime

Lecture 10 - Tuesday, October 9

We first take a look at a special case.

Bipartite Matchings

Definition 3.12: Some Terminologies

Let M ⊆ E be a matching.

• A node v ∈ V is M-exposed if δ(v) ∩M = ∅, otherwise it is M-covered.

• A path P in G is called M-alternating if its edges alternate between being in M and not being
in M .

• An M -alternating path whose start and end nodes are M -exposed is called an M-augmenting
path.

Here we state some facts without proving them. Feel free to try to prove. We will prove the result
in a more general context, aka matroids.

Note 3.8

Any augmenting path can be used to increase the size of matching by

M ←M∆P := (M − P ) ∪ (P −M)

Note 3.9

If we direct edges in M with L → R and edges not in M with R → L, then a M -augmenting path is
exactly a R→ L path in this digraph whose end parts are M -exposed.

Note 3.10

If there exists no M -augmenting path, then we can use König’s theorem and find a vertex cover equal
to the size of matching, which is a certificate for the optimality of our matching.

This gives us some intuition of how the algorithm would work.
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General Case, Matroid Intersection Let M1 = (U, I1) be a matroid with rank function r1 and M2 =
(U, I2) be a matroid with rank function r2. Let J ∈ I1∩I2. Construct the following directed bipartite graph

D = D(M1, M2, J)

whom has bipartition J ∪ (U − J). For every e ∈ U − J and f ∈ J , we establish

• an edge (e, f) if J ∪ {e} − {f} ∈ I1;

• an edge (f, e) if J ∪ {e} − {f} ∈ I2.

Now we define X1 = {e ∈ U − J : J ∪ {e} ∈ I1} and X2 = {e ∈ U − J : J ∪ {e} ∈ I2}.

U − J

J

J
∪
{e
} −
{f
} ∈
I 2 J ∪ {e} − {f} ∈ I1

J ∪ {e} − {f} ∈ I2

Definition 3.13: Chordless

We say a path P = u1u2 . . . uk is chordless if for any 1 ≤ i, j ≤ k, i < j + 1, (ui, uj) is not an edge.

Comment 3.9

Easy to see that the shortest u-v path in D is always chordless.

We use e to denote the nodes in U − J and f the nodes in J .

Theorem 3.11: Augmenting Path Theorem for Matroid Intersection

1. Let P = e1f1e2f2 . . . ekfkek+1 be a shortest X2 → X1 path in D, then

J ′ = J − {f1, . . . , fk}+ {e1, . . . , ek+1} ∈ I1 ∩ I2

and of course |J ′| = |J |+ 1. We also have several observations:

• e1 ∈ X2, ek+1 ∈ X1;

• Shortest implies that the path is chordless, ei /∈ X1 ∪X2 for all i = 2, . . . k;

• We could have k = 0, and this happens if and only if there exists e ∈ X1 ∩X2.

2. If there is no chordless X2 → X1 path in D, then J is a max-size common independent set.
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U − J

J

X2 X1

e1

f1

e2

fi

ei+1

fk

ek+1

Example of a X2 → X1 path P in D

The above theorem yields us a polytime algorithm for find the max-size common independent set:

1 J ← ∅ ;
2 Construct D = D(M1, M2, J) ;
3 while exists X2 → X1 path in D do
4 Let P be the shortest X2 → X1 path ;
5 Update J ← J∆P ;
6 Update D

7 return J

Algorithm 3: Polytime algorithm for max-size common independent set

Lemma 3.1

Let M = (U, I) be a matroid, J ∈ I. For any e ∈ U ,

1. J ∪ {e} contains at most one circuit;
2. If J ∪ {e} has a circuit in C, then there exists f ∈ C such that J + {e} − {f} ∈ I.

Note 3.11

If e /∈ X2, then J ∪ {e} contains an M2-circuit C ′ and have edges (f, e) precisely for all f ∈ C ′ − {e}.
Similarly, if e /∈ X1, then there exists an edge (e, f) in D.

Lemma 3.2

Let M = (U, I) be a matroid. A ⊆ U be such that A has a circuit C. Then for any e ∈ C,
r(A− {e}) = r(A).

Proof of Theorem 3.11. [Part 1]: For all i = 0, . . . , k, define

Ai = {f1, . . . , fi} ∪ J ′

which is the same as J ∪ {e1, . . . , ek+1} − {fi+1, . . . , fk}.

36



We will show that r1(Ai) ≥ |J |+ 1 for all i = 0, . . . , k by induction on k − i.
This implies that for i = 0, we get r1(A0) = r1(J ′) = |J ′|, which shows that J ′ ∈ I1.

[Base case]: The base case is when i = k, so Ak ⊇ J ∪ {ek+1}. By definition of ek+1 ∈ X1, we know that
J ∪ {ek+1} ∈ I1, so r1(Ak) ≥ r1(J ∪ {ek+1}) = |J |+ 1.

[Inductive step]: Suppose inductively r1(Ai) ≥ |J |+ 1, we consider Ai−1. Recall Ai−1 = Ai−{fi}. By lemma 3.2, if we
show that fi lies in some M1-circuit C ⊆ Ai, then

r1(Ai−1) = r1(Ai − {fi}) ≥ |J |+ 1

Note that J∪{ei} contains a M1-circuit C since ei /∈ X1, and C does not contain {fi+1, . . . , fk} because
otherwise (ei, fj) would be a chord for some j > i. Also, fi ∈ C since (ei, fi) is an edge, so C ⊆ Ai

and fi ∈ C.

To show that J ′ ∈ I2, we define Bi = {fi, . . . , fk}∪J ′ = J ∪{e1, . . . , ek}−{f1, . . . , fi−1}. We will show
by induction on i that r2(Bi) ≥ |J |+ 1.

Here we give a sketch as the proof is analogous to above.

[Base case]: i = 1. B1 ⊇ J ∪ {e1}, and e1 ∈ X2, so J ∪ {e1} ∈ I2

[Inductive step]: Suppose inductively r2(Bi) ≥ |J |+ 1, we consider Bi+1 = Bi − {fi}. We can show that Bi contains a
circuit C who contains fi, so r2(Bi+1) = r2(Bi). Thus,

r2(Bk+1) = r2(J ′) ≥ |J ′| =⇒ J ′ ∈ I2

[Part 2]: Now we prove the second part of the theorem.

Since there exists no X2 → X1 path in D, let A be the set of nodes reachable from X2 in D. Then

X2 ⊆ A, X1 ⊆ U −A, X1 ∩X2 = ∅, δout
D (A) = ∅

Let J1 = J ∩A and J2 = J −A. We show that{
J1 : M1-bases of A

J2 : M2-bases of U −A

}

This shows that |J1| = r1(A), |J2| = r2(U −A), so |J | = |J1|+ |J2| = r1(A) + r2(U −A), which implies
that J is the max-size common independent set.

[J1 is a M1-basis of A]: Suppose not, and there exists e ∈ A−J such that J1∪{e} ∈ I1. Since e ∈ A,
e /∈ X1, so J ∪ {e} has a M1-circuit C, and we cannot have C ⊆ J1 ∪ {e} since J1 ∪ {e} ∈ I1, which tells us
that there exists f ∈ C − J1. But then f ∈ J2 and we would have an edge (e, f) ∈ δout

D (A), a contradiction.
[J2 is a M2-basis of U −A]: Symmetric argument, left as an exercise.

Lecture 11 - Tuesday, October 21
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Proof of Lemma 3.1. [Statement 1] Suppose J ∪ {e} contains two circuits, call them C1 and C2. It must
be the case that e ∈ C1 ∩ C2, let f ∈ C1 − C2. We have C1 − {f} ∈ I, so we can extend C1 − {f} to an
independent set J ′ of size |J ′| = |J | by adding elements in J − ({C1 − {f}}) (by exchange property). Then
J ′ ⊆ J ∪ {e}, and f /∈ J ′. This implies that J ′ = J − {f}+ {e}, who contains C2, a contradiction.
[Statement 2] Follows from statement 1, if (J ∪ {e})−{f} /∈ I, then it contains some circuit C ′ such that
C ̸= C ′ since f /∈ C ′. But then J ∪ {e} ⊇ C, C ′, a contradiction.

Proof of Lemma 3.2. Consider C−{e} ∈ I, and extend this to a basis J of A. We essentially have J ⊆ A−{e}
because otherwise J ⊇ C. Hence

r(A− {e}) ≥ |J | = r(A) =⇒ r(A− {e}) = r(A)

Running Time of Augmenting Path Algorithm for Matroid Intersection There are at most
n = |V | iterations, and in each iteration,

• Constructing D, X2, X1 takes O(n2) independence oracle calls;

• Finding the shortest X2 → X1 path needs O(n2) operations, using BFS.

Hence there are O(n3) independence oracle calls and O(n3) operations.

3.5.5 Weighted Matroid Intersection

Given M1 = (U, I1) and M2 = (U, I2), and weights {we}e∈U , we wish to find

max
J∈I1∩I2

w(J)

The LP-relaxation for weighted matroid intersection is given as:

max
∑
e∈E

wexe s.t.

x(S) ≤ r1(S) ∀S ⊆ U

x(S) ≤ r2(S) ∀S ⊆ U

x ≥ 0
(LP)

Note 3.12

(LP) has integral extreme points, so the feasible reagion for it is

conv({XJ : J ∈ I1 ∩ I2})

Here is a cool application: Minimum Degree-bounded Spanning Tree (MDST)
Given graph G = (V, E), edge costs {ce}e∈E , and (node) degree bounds {bv}v∈V , we wish to find

min c(T ) s.t.
T is a spanning tree
|δT (v)| ≤ bv ∀v ⊆ V

(MDST)

This problem is NP-hard, but we have the following really nice result.
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Theorem 3.12

In polytime, we can determine if the above problem is infeasible, or find a spanning tree T such that
c(T ) ≤ OPT and

(a) |δT (v)| ≤ bv + 1 (best possible due to Singh-Lau);

(b) |δT (v)| ≤ bv + 2 (due to Goemans ’06)

The LP-relaxation for MDST is

min
∑
e∈E

cexe s.t.

x(E(S)) ≤ |S| − 1
x(E) = n− 1

x(δ(v)) ≤ bv ∀v ∈ V

x ≥ 0

(MDST-LP)

Let x∗ be the optimal solution to (MDST-LP), and define

F = {e ∈ E : x∗
e > 0} = supp(x∗)

Here is the idea: orient F to get a digraph D. Suppose we could do this so that |δin
D (v)| ≤ k for some constant

k, then we can define M1 to be the graphic matroid on F and M2 the partition matroid that encodes ≤ bv

outgoing edges for all v ∈ V . Then x∗ is the feasible solution to the resulting weighted matroid intersection
problem, so by note 3.12, we can find T such that T is a spanning tree and |δout

T (v)| ≤ bv for all v and
c(T ) ≤ cTx∗ = OPTMDST-LP. Note that

|δout
T (v)| ≤ bv =⇒ |δT (v)| ≤ bv + k

However, here comes the question:

Question 3.2.

Does an orientation D with |δin
D (v)| ≤ 2 exist?

By Hakimi’s Theorem 3.9, we can get such a D if and only if

|F (S)| ≤ 2|S| ∀S ⊆ V

which is done in the form of another matroid intersection problem. Using LP-theory about extreme points,
and the fact that tight spanning tree constraints can be assumed to come from a laminar family of tight
sets, we are actually able to show that

|F (S)| ≤ 2|S| ∀S ⊆ V
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4 Flows and Cuts

The problems are all about directed graphs unless specified otherwise

Lecture 12 - Thursday, October 23

Let D = (V, E) be a digraph, and {ue}e∈E be some edge capacities.

Definition 4.1: Feasible s-t Flow

Let s, t ∈ V . A feasible s-t flow is a vector x ∈ RE satisfying

(i) x(δin(v)) − x(δout(v)) = 0 for all v ∈ V − {s, t}. We denote the expression as fx(v), which can
be understood as the net inflow of node v;

(ii) 0 ≤ xe ≤ ue for all e ∈ E.

The value of an s-t flow is fx(t).

Note 4.1

Easy to observe that fx(t) = −fx(s).

Definition 4.2: Feasible Flow

More generally, given node demands {bv}v∈V where bv ∈ R, lower bounds {ℓe}e∈E , and capacities
{ue}e∈E , a feasible flow is a vector x ∈ RE satisfying fx(v) = bv for all v and ℓe ≤ xe ≤ ue for all e.

Note 4.2

For feasibility, we must have ℓe ≤ ue, and we will allow ue = +∞ and ℓe = −∞ as possible values.

4.1 Flow Problems

4.1.1 Maximum s-t Flow

The problem asks to find an s-t flow of maximum value, i.e.,

max fx(t) s.t.
fx(v) = 0 ∀v ∈ V − {s, t}

0 ≤ xe ≤ ue ∀e ∈ E
(MF)

This is always feasible (as we can just pick the 0 flow). We will often seek a maximum integeral flow.

Comment 4.1

Notice that this is essentially LP, but we want to study if there is a more efficient algorithm solving it
instead of treating it as an ordinary LP problem.
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4.1.2 (General) Feasible Flows

Given node demands {bv}v∈V where bv ∈ R, lower bounds {ℓe}e∈E , and capacities {ue}e∈E , does there exist
a feasible (integral) flow?

Discovery 4.1

We have two necessary conditions: ℓe ≤ ue for all e and
∑
v∈V

bv = 0.

4.1.3 Minimum Cost Feasible Flow

Given node demands {bv}v∈V where bv ∈ R, lower bounds {ℓe}e∈E , capacities {ue}e∈E , and some costs
{ce}e∈E , we want to find a feasible (integral) flow who minimizes the costs.

4.1.4 Useful Special Case of Minimum Cost Feasible Flow, Circulations

1. Given {ℓe, ue}e∈E , does there exist a (integral) circulation x such that ℓe ≤ xe ≤ ue for all e ∈ E?

2. Given {ce, ℓe, ue}e∈E , does there exist a min-cost (integral) circulation x such that ℓe ≤ xe ≤ ue for all
e ∈ E?

Definition 4.3: Circulation

A vector x ∈ RE satisfying fx(v) = 0 for all v ∈ V is called a circulation.

For flow feasibility or min-cost flow, we can always assume that all lower boudns are 0. Why? Given
{bv}v∈V and {ℓe, ue}e∈E , we can always transfer this problem to another problem with node demands

b′
v = bv −

(
ℓ(δin(v))− ℓ(δout(v))

)
= bv − fℓ(v)

and capacities
(ℓ′

e, u′
e) = (0, ue − ℓe)

and we have the following proposition:

Proposition 4.1

x is a feasible solution for ({bv}v∈V , {ℓe, ue}e∈E) if and only if x′ = (xe − ℓe)e∈E is a feasible solution
for ({b′

v}v∈V , {ℓ′
e, u′

e}e∈E).

Comment 4.2

Important to note that we cannot assume that the lower bounds for a circulation problem are all zero,
because after the transformation shown above, we may not get a circulation problem.
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4.1.5 Some Application

Example 4.1: Max-weight bipartite matching

Let G = (L∪R, E) be a bipartite graph and weights {we}e∈E , we can construct digraph D = ({s, t} ∪
L ∪R, E′) where E′ consists of

1. Arcs (s, v) for all v ∈ L with ue = 1, ce = 0;

2. Arcs (u, t) for all u ∈ R with ue = 1, ce = 0;

3. Arcs (v, u) for all uv ∈ E, u ∈ L, v ∈ R with
ue =∞, ce = −we;

4. Arc (t, s) with ue =∞, ce = 0.

and ℓe = 0 for all e ∈ E′. L

ue = 1

R

ue = 1

s t

Note that now we have

matching in G ≡ integral circulation in (D, {ℓe, ue})

max weight matching in G ≡ min-cost integral circulation in (D, {ℓe, ue})

Exercise 4.1

Model min-cost matching of size k as suitable flow problem (assume integrality property of flows).

Exercise 4.2

Model min-cost max-size matching as suitable flow problem (assume integrality property of flows).

Example 4.2: Max s-t flow: special case of min-cost circulation

D′

s t

e
ue

ut,s =∞

D

42



We can simply add the (t, s) arc with ut,s = +∞, all other edges have the same ue as in
max-flow instnace, and all ℓe = 0. Now,

x is a feasible s-t flow in D if and only if (x, xt,s = fx(t)) is a circulation in D′

Setting ce = 0 for all e ∈ E, ct,s = −1, then the min-cost circulation is equivalent to the max s-t flow.

Example 4.3: Orientations

Recall that given an undirected graph G = (V, E) and integers {αv ≥ 0}v∈V , an α-orientation of G is
the process of directing edges in G such that the in-degree for all v is bounded above by αv.

s t

E

e = uvue
= 1

V

u

v

α
u

αv

We add a node for each edge e = uv and a node for every v ∈ V . Given the above max s-t flow instance,
a orientation of G corresponds to an integer s-t flow such that flow on every (s, e) arc is equal to 1,
which corresponds to a max s-t flow value equals to |E| (and integrality property of flows).

Example 4.4: Flow feasibility can be readuced to max s-t flows

Given instance (D = (V, E), {bv}v∈V , {ℓe}e∈E , {ue}e∈E) of flow feasibility, we have basic necessary
conditions for flow feasibility:

ue ≥ ℓe ∀e ∈ E and
∑
v∈V

bv = 0

D

s
v

ue = |bv |
ue

v

t

ue = bv

V − V +

V − := { v ∈ V : bv < 0 }

V + := { v ∈ V : bv > 0 }∑
v∈V +

bv = −
∑

v∈V −

bv
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We construct D′ = ({s, t} ∪ V, E′), where E′ consists of arcs:

1. e = (u, v) for all e ∈ E with the same capacity u′
e = ue;

2. (s, v) for all v ∈ V − with capacity |bv|;

3. (v, t) for all v ∈ V + with capacities bv.

Now we have

x is a feasible flow for (D, b, u) ⇐⇒

x′ =
(

x, {x′
sv = |bv|}v∈V − , {x′

vt = bv}v∈V +

)
is a feasible s-t flow in (D′, u′)

Such a feasible s-t flow in (D′, u′) must be a max s-t flow and have value =
∑

v∈V +

bv +
∑

v∈V −

|bv|, so

(D, b, u) has a feasible flow if and only if max s-t flow value in (D′, u′) is equal to
∑

v∈V +

bv.

4.2 Max s-t Flow and Minimum s-t Cut

Lecture 13 - Tuesday, October 28

Let
(

D = (V, E), s, t ∈ V, {ue ≥ 0}e∈E

)
be an instance of max s-t flow.

Definition 4.4: s-t Cut

An s-t cut is an edge-set of the form δout(Z) where s ∈ Z and t /∈ Z.

Definition 4.5: Capacity

The capacity of an s-t cut δout(Z) is defined as

u
(

δout(Z)
)

:=
∑

e∈δout(Z)

ue

Lemma 4.1

Let x be an s-t flow and δout(Z) be an s-t cut, then

fx(t) = x
(

δout(Z)
)
− x
(

δin(Z)
)
≤ u

(
δout(Z)

)
Proof. We have

fx(t) =
∑

v∈V −Z

fx(v) = x
(

δin(V − Z)
)
− x
(

δout(V − Z)
)

= x
(

δout(Z)
)
− x
(

δin(Z)
)

as desired.
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4.2.1 Min s-t Cut Problem

Find an s-t cut δout(Z) that minimizes u
(

δout(Z)
)

. By Lemma 4.1, we have

max s-t flow value ≤ capacity of min s-t cut value

Theorem 4.1: Max-flow Min-cut Theorem

We in fact have
max s-t flow value = capacity of min s-t cut value

4.2.2 Algorithm for Max s-t Flows

The essence of the algorithm is Residual/ Auxilliary Diagraph and Augmenting Paths.

fx(t) = 10

(∗)
s

a

b

t

10, 10
10

,
10

10, 10100

100

See the above picture as an example. To get a better flow, we can:

1. Push “forward” (i.e., ↑) 10 units on s, b;

2. Push “backward” 10 units on b, a;

3. Push “forward” 10 units on a, t.

to obtain

fx(t) = 20

s

a

b

t

10, 10

10

10, 10100, 10

100, 10
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Definition 4.6: Residual/ Auxilliary Digraph

Given an s-t flow instance
(

D = (V, E), s, t, {ue}
)

and a s-t flow x, the residual/ auxilliary
digraph w.r.t. x, denoted as D(x), is defined as follows: D(x) = (V, E(x)), where

1. for every (a, b) ∈ E with xa,b < ua,b, we include (a, b) ∈ E(x) and give it capacity = ua,b − xa,b.
We call (a, b) ∈ E(x) a forward arc.

2. for every (a, b) ∈ E with xa,b > 0, we include (b, a) ∈ E(x) and give it capacity = xa,b. We call
(b, a) ∈ E(x) a backward arc.

Example 4.5

Consider the example above (example (∗)) again, we have

s

a

b

t

10
10

10100

100

where the orange arcs are backward arcs and blue arcs are backward arcs. We call the capacity of an
arc in D(x) its residual capacity.

Comment 4.3

Residual digraph and augmenting paths generalizes what we saw for bipartite matchings.

Lemma 4.2

Let x be an s-t flow in
(

D = (V, E), s, t, {ue}
)

. Let P be a s-t path in D(x), which is called an
x-augmenting path. Let γ(P ) be the minimum residual capacity of an edge in P ,

γ(P ) = min
{

min{ue − xe : e an forward arc in P}, min{xa,b : (b, a) an backward arc in P}
}

define x′ ∈ RE as follows:

x′
a,b =


xa,b + γ(P ) if (a, b) ∈ P and is a forward arc
xa,b − γ(P ) if (b, a) ∈ P and is a backward arc
xa,b otherwise

Then x′ is an s-t flow, and
fx′(t) = fx(t) + γ(P )
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Proof.

This proof is left as an exercise, the argument below is from CS341.

We first have several things to check, in order to show that x′ is still an s-t flow:

1. Are capacity constraints satisfied? We add/ subtract γ(P ) to/ from each edge, where γ(P ) is
the minimum of the smallest remaining capacity, and the current flow.

2. What about conservation of flow? Consider how the flow into and out of each vertex u ∈ V −{s, t}
changes as a result of running augmenting, we show change in f in(u) = change in fout(u). There are
four cases, depending on whether the edges of entering/ leaving u are forward/backward:

Case 1: [Forward and forward] Both x′
(

δin(u)
)

and x′
(

δout(u)
)

are increased by γ(P );

Case 2: [Backward and backward] This case is similar to the case above;

Case 3: [Forward and backward] Both x′
(

δin(u)
)

and x′
(

δout(u)
)

are increased by γ(P );

Case 4: [Forward and forward] This case is similar to the case above.

3. Does source s still have no flow into it? Since x is a flow, x(δin(s)) = 0. To get x′(δin(s)),
an augmenting path must include an edge into s, but now an augmenting path starts at s, then returns
to s, forming a cycle, which is a contradiction.

4. Does sink t still have no flow out of it? Similar argument as above.

Now it suffices to show that
fx′(t) = fx(t) + γ(P )

Notice that this is equivalent to saying that

x′(δout(s)) = x(δout(s)) + γ(P )

Think about what really is an augmenting path? It is a path that comes out of the source and ends at the
sink, and it is necessarily starting on a forward edge, hence the extra flow that goes through the augmenting
path P is added to the original flow x, which implies what we want.

Theorem 4.2

x is a maximum s-t flow if and only if there exists no augmenting path in D(x).

Proof. Forward direction follows from Lemma 4.2. Conversely, suppose there is no augmenting path, so if
we take

Z = {v ∈ V : ∃s⇝ v path in D(x)}

then s ∈ Z, t /∈ Z, and δout
D(x)(Z) = ∅. Consider an edge (a, b) ∈ δin

D (Z) ∪ δout
D (Z):

1. If (a, b) ∈ δout
D (Z). Because (a, b) does not appear in the residual digraph, we must have that xa,b = ua,b.

2. If (a, b) ∈ δin
D (Z). Since (b, a) is not a backward arc in D(x), we must have xa,b = 0.
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Upshot: Arcs in δout
D (Z) are saturateed (xe = ue), and arcs in δin

D (Z) carry 0 flow (xe = 0). Hence

fx(t) = x
(

δout(Z)
)
− x
(

δin(Z)
)

︸ ︷︷ ︸
=0

= u
(

δout(Z)
)

So x is the max s-t flow, and δout
D (Z) is the min s-t cut.

Proof of Theorem 4.1. Max s-t flow always exists since the max s-t flow problem is an LP that is feasible,
not unbounded. Therefore, by theorem 4.2, we get

max s-t flow value = capacity of min s-t cut value

done.

Exercise 4.3

Use Max-flow Min-cut Theorem to prove

(a) König’s Theorem, and

(b) Hakimi’s Theorem

4.2.3 Application of MFMC Theorem

Theorem 4.3

Let I =
(

D = (V, E), {bv}v∈V , {ℓe, ue}e∈E

)
be a flow-feasibility instance. A feasible flow exists for

the above instance if and only if

(1) b(V ) = 0, and ℓe ≤ ue for all e;

(2) b(X) ≤ u
(

δin(X)
)
− ℓ
(

δout(X)
)

for all X ⊆ V .

Proof. Assuming that (1) holds, we will that that a feasible flow exists if and only if (2) holds.
A feasible flow exists for I if and only if a feasible flow exists for I ′ defined as

I ′ =
(

D = (V, E), {b′
v := bv − fℓ(v)}v∈V , {ℓ′

e = 0, u′
e := ue − ℓe}e∈E

)
Recall, we showed that for instance I ′ shown above, we have that

I ′ has a feasible flow ⇐⇒ Max s-t flow value for I ′ =
∑

v∈V +

b′
v

⇐⇒ Min s-t cut capacity in I ′ = b′(V +)
⇐⇒ Min s-t cut capacity in I ′ ≥ b′(V +)
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(See the definition of V + on page 42). Consider an s-t cut δout
D′ (Z), where s ∈ Z, t /∈ Z. Let X = V − Z, so

u′
(

δout
D′ (Z)

)
= u′

(
δin(Z)

)
+ b′(V + − C) +

(
− b′(V − ∩X)

)
so we have

u′
(

δout
D′ (Z)

)
≥ b(V +)

≡ u
(

δin(X)
)
− ℓ
(

δin(X)
)
≥ b′(V + ∩X) + b′(V − ∩X)

≡ u
(

δin(X)
)
− ℓ
(

δin(X)
)
≥ b′(X)

≡ u
(

δin(X)
)
− ℓ
(

δin(X)
)
≥ b(X)−

[
ℓ(δin(X))− ℓ(δout(X))

]
In other words, u(δin(X)) − ℓ(δout(X)) ≥ b(X). Therefore, we conclude that I has a feasible flow if and
only if u(δin(X))− ℓ(δout(X)) ≥ b(X) for any X ⊆ V .

Lecture 14 - Thursday, October 30

4.2.4 Ford-Fulkerson (FF) Algorithm (1956) for Max s-t Flow

We establish the following algorithm:

1 Start with x← 0;
2 while ∃ augmenting path in D(x) do
3 Pick an augmenting path P ;
4 Update x by augmenting along P ;
5 Update D(x);

6 return x;
Algorithm 4: Ford-Fulkerson Algorithm (1956)

We care about the runtime of the above algorithm. We note that termination always occurs with:

• integer capacities, in which case we will maintain an integral flow, which implies that we have an
integral max s-t flow;

• rational capacities;

However, with irrational capacities, termintation need not occur, and limit of s-t flow need not be
max s-t flow.

Note 4.3

It is important to point out that even when termination happens, but it needs not happen in poly-time.
Here is an example:
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Example 4.6

Suppose we have the capacities shown below:

s

a

b

t

M

1
MM

M

where M ≫ 1 is an integer. Choosing P containing (a, b) or (b, a) in every iteration will requite 2M

iterations, which is not poly-time.

Hence, we need to be careful in choosing augmenting paths:

• Choose P with maximum γ(P );

• Shortest-Path Rule: Choose P with fewest number of arcs1;

Theorem 4.4: Edmonds-Karp 1972, Dinitz 1970

Ford-Fulkerson with the Shortest-Path rule terminates in ≤ m · n iterations.

Note 4.4
Note that a shortest augmenting path can be found using BFS in O(m + n) time, so the running time
of Ford-Fulkerson with the Shortest Path rule is O(mn(m + n)).

Proof of Theorem 4.4. Let D = (V, E, s, t, {ue}) be a max s-t flow instance and let x be the current s-t flow.
Let D(x) be the residual digraph w.r.t. x. Suppose we choose augmenting path P in D(x). Let x′ be the
new s-t flow after augmenting along P . How does look D(x′) = (V, E(x′)) compare with D(x)?

[Observation]:

1. E(x′) = {(a, b) ∈ E(x) : neither (a, b) nor (b, a) is in P }︸ ︷︷ ︸
E1

∪{(b, a) : (a, b) ∈ P}︸ ︷︷ ︸
E2

∪ strict subset of P .

We note that

(a) Flow values on arcs of D corresponding to E1 does not change;
(b) In the E2 perspective, it means that change in flow on arcs of D due to P can always be reversed

in the next iteration;
(c) The reason why there is a strict subset is because for every P , there is some edges of P , corre-

sponding to arc that determines γ(P ), that does not appear in D(x′). We call thsoe arcs critical
arcs of the current interation.

1Ford-Fulkerson Algorithm with the Shortest-Path-Rule is known as the Edmonds-Karp Algorithm
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We define some notations: let

ℓx(u, v) := the least number of arcs on a u⇝ v path in D(x)

this value is ∞ if there exists no u ⇝ v path. Claim 1 : we will show later that in the new flow x′, the
shortest path between s-t does not increase:

ℓx(s, t) ≥ ℓx′(s, t)

We call it a phase, a maximal sequence of iterations where ℓx(s, t) does not change. Claim 2 : we will show
that a phase lasts for ≤ m iterations. Merging the above two results, we will have that: the number of
phases is ≤ n, and so the number of iterations is ≤ nm.

Definition 4.7: Feasible Node Potential

Let G = (V, E) be a digraph, {ce}e∈E be edge costs. We say {yv}v∈V are feasible node potentials if

yv − yu ≤ cu,v ∀(u, v) ∈ E

Fact 1: Consider any a⇝ b path P :

a• −→ • −→ · · · −→ •b

Adding all the potential differences of edges in P gives us c(P ) ≥ yb − ya. Therefore, the shortest a-b
path length under {ce}e∈E ≥ yb − ya.

Fact 2: Let G = (V, E) be a digraph, {ce}e∈E be edge costs. Suppose G has no negative-cost cycles:

(a) Then setting yv = min{c(P ) : P is an s→ v path for all v} gives feasible node potentials.

Analogously, if we define V := {v ∈ V : ∃s → v path in G}, then setting yv = min{c(P ) :
P is an s→ v path for all v ∈ V } gives a feasible node potentials for (V , {(u, v) : u, v ∈ V }).

(b) Setting yv = −min{c(P ) : P is an v→ t path} for all v ∈ V ′′ = {v ∈ V : ∃ v→ t path} gives
feasible node potentials for (V ′′, {(u, v) ∈ E : u, v ∈ V ′′}).

[Observation]: If v does not lie on a s-t path in D(x), then it does not lie on a s-t path in D(x′).
Hence we will only consider D(x) = portion of D(x) consisting of nodes that lie on some s-t path in D(x).

Now we have everything we need. Let x be the current s-t flow. Let P be the shortest s-t path in
D(x), and let x′ be the new s-t flow after augmenting along P . We have the following lemma:
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Lemma 4.3

We have
1. ℓx′(s, v) ≥ ℓx(s, v) for all v ∈ V ;

2. ℓx′(v, t) ≥ ℓx(v, t) for all v ∈ V ;

Proof. For (1), consider nodes reachable from s in D(x′). By Fact 2(a) above, setting yv = ℓx(s, v) gives
feasible node potentials for D(x) with edge costs = 1. We claim y remains feasible node potential for D(x′)
(with edge costs = 1). This suggests that

ℓx′(s, v) ≥ yv − ys = ℓx(s, v)

To show the claim, we only need to consider an edge e = (a, b) ∈ E(x′) − E(x) (which is essentially a
backward egde). But then (b, a) ∈ P , so ya − yb ≤ 1. Also,

ya = ℓx(s, a) = 1 + ℓx(s, b) = yb

Since P is the shortest s→ t path in D(x), so yb − ya = −1 ≤ 1, so for e = (a, b)s feasibility condition of no
potentials to holds.

For (2), similar argument using node potentials from fact 2(b). This is left as an exercise.

The above Lemma proves the first claim, so it now suffices to prove the second claim. We have
another Lemma:

Lemma 4.4

Consider any arc (a, b) ∈ E, then in any phase, (a, b) or (b, a) together can be critical for at most 1
iteration of the phase.

Proof. Consider the first iteration, call it i, of the phase, where one of (a, b) or (b, a) is a critical arc of that
iteration. Let x = x(i) be the flow at the start of iteration, and P be the augmenting path in D(x). Let
x̄ = x(i+1) be the flow at the end of the iteration. Say (a, b) is the critical arc in iteration i. For (a, b) or (b, a)
to be critical in some later iteration of the phase, we must have that in some later iteration, the augmenting
path Q chosen contains the arc (b, a). Let x′′ be the flow at the start of the iteration when Q is chosen, we
know

ℓx′′(s, t) = ℓx′′(s, b) + 1 + ℓx′′(a, t)
≥ ℓx(s, b) + 1 + ℓx(a, t)

Also ℓx(s, b) = 1 + ℓx(s, a), so

ℓx′′(s, t) ≥ 2 + ℓx(s, a) + ℓx(a, t)
> ℓx(s, t)

which contradicts that these two iterations are part of the same phase.

The above Lemma implies that a phase lasts for at most m iterations. Hence we are done proving
the Theorem.
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4.3 Min-Cut Problem

Lecture 15 - Tuesday, November 11

Given an undirected graph G = (V, E), non-negative, integer costs {ce ≥ 0}e∈E , the min-cut problem
asks to find a set S ̸= ∅, S ⊊ V that minimizes c(δ(S)).

Comment 4.4

The instance (G, c) is equivalent to a unweighted multigraph such that edge (u, v) ∈ G with cost ce can
be viewed a set of ce edges connecting u and v.

4.3.1 Randomized Algorithm CONTRACT due to Karger 1993’

The algorithm is based on contracting an edge.

Note 4.5

Recall that contracting an edge e = ab means: (1) identify a and b into a single node, (2) throw
out self loops, and (3) keep parallel edges.

We first establish the algorithm:
Input: Unweighted multigraph G = (V, E)

1 H ← G;
2 while H has more than two nodes do
3 Choose an edge e = xy uniformly at random from H;
4 H ← H/xy // H after contracting xy

5 Let (S, V − S) be the node-sets corresponding to the two nodes left;
6 return δ(S).

Algorithm 5: CONTRACT

Proposition 4.2

We have the following observations:

1. A cut δ(S) is returned if and only if none of the edges in δ(S) is contracted by CONTRACT;

2. If the min-cut value is k, then |δ(v)| ≥ k for all v, and this implies that the number of edges
≥ nk/2, where n = |V |;

3. Min-cut value does not decrease after we contract an edge.

Theorem 4.5

Let δ(S) be a specific min-cut, then

Pr
[
CONTRACT returns δ(S)

]
≥ 2

n2
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Proof. Consider the ith iteration of CONTRACT, when we have ni = n− i + 1 nodes in H. We have

Pr
[
CONTRACT contracts an edge from δ(S)

∣∣∣ CONTRACT did not pick an edge
to contract in any of the previous iterations

]
= |δ(S)|
|E(H)|

Let k = |δG(S)|. Then, given that we did not contract an edge from δ(S) in iterations 1, . . . , i− 1, min-cut
value in H is also k (by 4.2(c)). Moreover, we know that |E(H)| ≥ nik/2 by 4.2(b), so

Pr
[
CONTRACT contracts an edge from δ(S)

∣∣∣ CONTRACT did not pick an edge
to contract in any of the previous iterations

]
≤ 2

ni

Therefore,

Pr
[
CONTRACT returns δ(S)

]
≥
(

1− 2
n

)(
1− 2

n− 1

)
· · ·
(

1− 2
3

)
= 2

n(n− 1) ≥
2
n2

as desired.

Corollary 4.1

There are at most
(

n

2

)
min-cuts in any graph G, and if we run CONTRACT

(
n

2

)
log n times, we will

see every min-cut of G with high probability.

Proof. The probability of CONTRACT return a specific min cut is over 2/n2, and the probability of CON-
TRACT yields an arbitrary min-cut is [2/n2 · number of min-cuts], which cannot exceed 1.

4.3.2 Picking an Edge (of Integer Cost ce ≥ 0) Arbitrarily at Random

1. Pick a node x with probability
c(δ(x))∑

v∈V c(δ(v))

2. Pick e ∈ δ(x) with probability
ce

c(δ(x))

The above choosing process uses only polynomial number random bits.
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4.3.3 More Applications

Application 1: Optimal Closure Problem Given a digraph D = (V, E) and (could be negative)
rewards {πv}v∈V , we wish to find a set A ⊆ V with δout

D (A) = ∅ (what we call a closure) that maximizes
π(A).

Define
V + = {v ∈ V : πv > 0}
V − = {v ∈ V : πv < 0}

and now

maxπ(A) ≡ min
(

π(V +)− π(A)
)

=
∑

v∈V +−A

πv +
∑

v∈V −∩A

(−πv)︸ ︷︷ ︸
:=π′(A)

We will create min s-t cut instance (D′, s, t, {ue}) such that

A ⊆ V is a closure ⇐⇒
(1) δout

D′ (A∪{s}) is an s-t cut with finite capacity

(2) and u

(
δout

D′ (A∪{s})=π′(A)
)

Therefore, solving the min s-t cut on (D′, s, t, {ue}) solves the optimal closure problem. Here is how we
construct the min s-t cut instance:

D

s
v

ue = πv

ue =∞
v

t

ue = −πv

V + V −

(s, v) with u(s,v) = πv for all v ∈ V +

(v, t) with u(v,t) = −πv for all v ∈ V −

ue =∞ for all e ∈ E

Note 4.6

In the constructions of the directed egdes, the first two constructions take care of the second
requirement, while the third takes care of the first requirement.
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Matrix Rounding Given a matrix A, we wish to round entries of A to obtain Ã = {ãij}i,j such that

1. ãij ∈ {⌊aij⌋, ⌈aij⌉};

2. R̃i =
∑

j ãij ∈ {⌊Rj⌋, ⌈Rj⌉};

3. C̃i =
∑

i ãij ∈ {⌊Ci⌋, ⌈Ci⌉}.

4. T̃ =
∑

i,j ãij ∈ {⌊T ⌋, ⌈T ⌉}.

Comment 4.5

Ri and R̃i denotes the sum of the ith row of matrix A and Ã respectively. Similar, C denotes the
column sum and T denotes the total sum (i.e., the sum of all the entries).

Lecture 16 - Thursday, November 13

Theorem 4.6

A rounded matrix always exists and can be found by solving a flow feasible problem.

Proof. Consider the following flow network:

s t

Rows

i⌊R i⌋,
⌈R i⌉

Cols

j ⌊Cj⌋, ⌈Cj⌉

⌊a
ij ⌋, ⌈a

ij ⌉

⌊T ⌋, ⌈T ⌉

An integer feasible flow is equivalent to a rounded matrix Ã, and

Feasible flow ⇐⇒ Integral feasible flow

since all ℓe and ue and bv are integers. Moreover, we know that a feasible flow exists because we can use the
input matrix A to produce a feasible flow.
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4.4 Min-Cost Flows

The question is worded as follows: Given a digraph D = (V, E), node demands {bv}v∈V , {ℓe ≤ ue}e∈E , costs
{ce}e∈E , we wish to find a min-cost feasible flow.

Comment 4.6

We assume that ℓe = 0 (we have shown that we can assume this).

To find the min-cost feasible flow is essentially to solve the following LP:

min
∑
e∈E

cexe s.t.

x(δin(v))− x(δout(v))︸ ︷︷ ︸
=:fx(v)

= bv ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

(P)

Comment 4.7

We also assume that all ues are finite and > 0.

Optimality Conditions: Finding the dual of (P), we obtain

max
∑
v∈V

bvyv −
∑
e∈E

ueze s.t.
yv − yu − zu,v ≤ cu,v ∀(u, v) ∈ E

z ≥ 0
(D)

Note 4.7

Given any y ∈ RV , we can optimally complete it to (y, z) that is feasible to (D) by setting zu,v =
max{0, yv − yu − cu,v} for all (u, v) ∈ E.

Question 4.1.

We want to ask when is x∗ (feasible to (P)) optimal?

By LP theory, we know that x∗ is optimal to (P) if and only if there exists (y∗, z∗) feasibile to (D)
such that x∗, (y∗, z∗) satisfy Complementary Slackness conditions. But here comes another question:

Question 4.2.

When does there exist y∗ and z∗ defined as established in note 4.7 such that Complementary Slackness
conditions are met?

From how we established z∗, we can infer that if

y∗
v − y∗

u ≥ cu,v

then the first constraint will be tight for (u, v). Therefore, it is tight for (u, v) if and only if y∗
v−y∗

u ≥ cu,v.
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Recall Complementary Slackness conditions:

• x∗
u,v > 0, then first constraint tight for (u, v), which happens if and only if y∗

v − y∗
u ≥ cu,v.

• z∗
u,v > 0, then x∗

u,v = uu,v, i.e., y∗
v − y∗

u ≥ cu,v, and so x∗
u,v = uu,v.

Interpret these two conditions:

• x∗
u,v > 0 implies that y∗

u − y∗
v ≤ −cu,v;

• If node-potential feasibility condition is violated for (u, v) ∈ E, then (u, v) /∈ D(x∗) (which is equivalent
to x∗

u,v = uu,v).

Consider the following edge costs for D(x): Give edge (a, b) in D(x) a cost of:

1. ca,b, if (a, b) is a foward edge;

2. −cb,a, if (a, b) is a backward edge.

(denote these edge costs as c′
e.) Then y∗ is a feasible node potential for (D(x∗), c′).

Theorem 4.7

TFAE:

1. A feasible flows x∗ is optimal to (P);

2. (D(x∗), c′) has feasible node potentials;

3. (D(x∗), c′) has no negative cycles;

Proof. The equivalence of statements 2 and 3 is omitted.

4.4.1 Cycle Cancelling Algorithm

The above theorem 4.7 leads to the following generic cycle cancelling algorithm:

1 Start with a feasible flow x (we know how to compute this by solving max s-t flow problem);
2 while (D(x), c′) has a negative cycle do
3 Find such a negative cycle Z;
4 Update x by pushing flow along Z;

5 return x;
Algorithm 6: Cycle Cancelling Algorithm (CCA)

Comment 4.8

For line 4 in the above algorithm:

1. ↑ flow on edges of D ≡ forward edges on Z;
2. ↓ flow on edges of D ≡ backward edges on Z;

The amount by which the flow changed is γ(Z); Hence the change in cost is γ(Z) · c′(Z).
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How to identify a negative cycle to turn CCA into an efficient algorithm?

First attempt: Find the most negative cycle (i.e., cycle Z with smallest c′(Z)).

We have two issues:

1. For special case of max s-t flow, this transfers to choosing any augmenting path, which we do not get
termination in polytime;

2. Find the most negative cycle is NP-hard.

Second attempt: Find cycle with c′(Z) < 0 that maximizes |γ(Z) · c′(Z)|.

Although we can get termination in polytime, but finding such a cycle is NP-hard.

Third attempt: Minimum mean-cost cycle rule. Find cycle with the smallest mean cost, i.e., cycle Z

such that minimizes c′(Z)
|Z| .

Note 4.8

For max s-t flow, this precisely corresponds to the shortest augmenting path.

4.4.2 Minimum Mean-Cost Cycle Rule

We will prove that the min-cycle rule works.

Definition 4.8:

We define
µ(x) = mincycle Z in D(x)

c′(Z)
|Z|

We call x is ε-optimal for some ε > 0 if

(D(x, {c′
e + ε}e∈E(x)))

has no negative cycles. We write ε(x) to be the smallest ε > 0 such that x is ε-optimal.

Lemma 4.5

If µ(x) < 0, then µ(x) = −ε(x).

Proof. We have

ε ≥ ε(x) ⇐⇒ ε ≥ 0, x is ε-optimal
⇐⇒ ε ≥ 0, c′(Z) + ε|Z| ≥ 0 ∀ cycle Z in D(x)

⇐⇒ ε ≥ 0, ε ≥ −c′(Z)
|Z|

∀ cycle Z in D(x)

⇐⇒ ε ≥ −µ(x)
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and so ε(x) = −µ(x).

Lecture 17 - Monday, November 17

Fact (we take the following result as a fact): Given (G, {we}e∈E(G)), we can efficiently find a
negative cycle, if one exists, or find feasible potentials.

Note 4.9

We can use binary search to find ε(x). We need upper bound on ε(x) (note that we already have lower
bound):

ε(x) ≤ C := maxe∈E(x)|c′
e|

since c′
e + C ≥ 0 for all e ∈ E(x).

We also assume that all edge costs are integers.

Note 4.10

Note that if Z1 and Z2 are such that c′(Z1)
|Z1| ̸=

c′(Z2)
|Z2| , then

∣∣∣ c′(Z1)
|Z1| −

c′(Z2)
|Z2|

∣∣∣ > 1
n2 . Hence, if we find

an interval (ε1, ε2) such that ε1 < ε(x) ≤ ε2 and ε2 − ε1 ≤ 1/n2, then we must have ε(x) = ε2. This
implies that we can find ε(x) using binary search in O(log(n2C)) iterations.

Definition 4.9:

Given y ∈ RV , define reduced cost

c′
a,b

(y) := c′
a,b − (yb − ya) ∀(a, b) ∈ E(x)

Now, we have the following equivalence,[
y is a feasible node potential for (D(x), {c′

e + ε}e∈E(x))
]
≡
[

c′
e

(y) ≥ −ε for all e ∈ E(x)
]

Let y be feasible node potentials for the residual digraph (D(x), {c′
e + ε(x)}e∈E(x)), we claim that

Z is a minimum mean-cost cycle in D(x) ⇐⇒ c′
e

(y) = −ε(x) ∀e ∈ Z

Proof of the above claim. The proof is left as an exercise.

We will show that

1. ε(x) does not increase;

2. After O(m) iterations, ε(x) decreases by a multiplication factor of (1− 1/n).
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Proof of Claim 1. Let ε1 = ε(x) and y be feasible node potentials for
(

D(x), {c′
e + ε1}e∈E(x)

)
. Let x′ be the

flow after augmenting along a min mean-cycle Z in
(

D(x), {c′
e}
)

. We will show that y is a feasibile node

potential for
(

D(x′), {c′
e + ε1}e∈E(x′)

)
, which implies that ε(x′) ≤ ε1.

The only edges (a, b) ∈ E(x′)− E(x) are those for which (b, a) ∈ Z. This implies that

c′
b,a

(y) = −ε1 ≡ c′
b,a − (ya − yb) = −ε1

=⇒ ya − yb = c′
b,a + ε1 = −c′

a,b + ε1

=⇒ yb − ya = c′
a,b − ε1 ≤ c′

a,b + ε1

as desired.

Proof of Claim 2. Consider flow x(0) at the start of some iteration i. Let ε0 = ε(x(0)) and y(0) be feasible
node potentials for

(
D(x(0)), {c′

e + ε0}e∈E(x(0))

)
. Say that an edge (a, b) is y(0)-negative if

c′
a,b

y(0)

:= c′
a,b − (y(0)

b − y(0)
a ) < 0

Let E−(x) be the y(0)-negative edges in E(x), we observe that

If (a, b) is y(0)-negative, then (b, a) is NOT y(0)-negative edges.

We claim that: suppose we have a flow x, and the cycle Z picked in D(x) is such that all edges of
Z are y(0)-negative. Let x′ be the flow after augmenting along Z, then

1. |E−(x′)| < |E−(x)|, and

2. If y(0) is a feasible potential for
(

D(x), {c′
e +ε0}e∈E(x)

)
, then it is a feasibile potential for

(
D(x′), {c′

e +

ε0}e∈E(x′)

)
.

Why does this claim proves what we want?

Note 4.11

We note that for x(0), all edges of cycle in D(x(0)) are y(0)-negative.

After ≤ m iterations, starting from x(0), we have a flow x such that there exists no y(0)-negative
edges (i.e., E−(x) = ∅), or the cycle Z picked from D(x) is such that at least one of the egdes (call it
e∗) of Z is not y(0)-negative.

The former implies that x is our min-cost flow. If it’s the latter, it means that

c′(Z) + ε(x)|Z| = 0

(from the fact that µ(x) = −ε(x)). Also,

c′(Z) + ε0|Z| = c′(y0)(Z) + ε0|Z| =
∑

e∈Z:e ̸=e∗

(
c′

e

y0

+ ε0

)
+ e′

e∗
(y0) + ε0
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We know that the big sum has value ≥ 0 becase y(0) is a feasible node potential for
(

D(x), {c′
e + ε0}

)
.

We also know that e′
e∗

(y0)
≥ 0 since e∗ is not y(0)-negative. Therefore,

c′(Z) + ε0|Z| ≥ ε0

Hence
ε0(|Z| − 1) ≥ −c′(Z) = ε(x)|Z|

which further implies that
ε(x) ≤ ε0

(
1− 1
|Z|

)
≤ ε0

(
1− 1

n

)
as desired.

Therefore, it suffices for us to prove the subclaim now :). When we push flow along Z, for every
(a, b) ∈ Z, we create (b, a) ∈ E(x′), but (a, b) is y(0)-negative, (b, a) is NOT y(0)-negative. Also, at least one
edge in Z will not appear in E(x′), so we are indeed strictly reducing the number of y(0)-negative edges (i.e.,
|E−(x′)| < |E−(x)|).

For the second part. The only new edges in E(x′) − E(x) are (b, a) where (a, b) ∈ Z, this suggests
that (a, b) is NOT y(0)-negative. Henceforth, y(0) is a feasible node potential for

(
D(x′), {c′

e + ε0}
)

.

To finish up, initial flow has
ε(x) ≤ C := maxe∈E |c′

e|

and if ε(x) < 1/n, then ε(x) = 0, we will get termination in O(mn log(nc)) iterations.
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5 Matchings

Recall that given an undirected graph G = (V, E), a set M ⊆ E is a matching if |δ(v) ∩M | ≤ 1 for all
v ∈ V . Given a matching M , we say that a vertex v is M-exposed if M ∩ δ(v) = ∅, otherwise we call it
M-covered.

A path P in G is M-alternating if its edges alternate between being in M and not in M . Such
a path is M-augmenting if both of its endpoints are M -exposed. Here is a fact, if P is augmenting, then
M ′ = M∆P (:= (M − P ) ∪ (P −M)) is a matching with size |M ′| = |M |+ 1.

Theorem 5.1

M is a maximum matching if and only if there exists no M -augmenting path.

Proof. Forward direction directly follows from the above fact. Conversely, suppose for a contradiction that
M is not a maximum matching, let M ′ be a matching with |M ′| > |M |. Consider F = M∆M ′. Each node
v has degree at most 2 in F , so F consists M -alternating paths and M -alternating cycles. Also,

|M ′| − |M | =
∑

components Z of F

(
|Z ∩M ′| − |Z ∩M |

)
=

∑
components Z of F

(
|Z −M | − |Z ∩M |

)
Since |M ′| > |M |, there exists some component Z of F such that |Z −M | > |Z ∩M |. This implies that Z

is an M -alternating path and its end points are M -exposed.

Lecture 18 - Tuesday, November 18

5.1 Min-max Formula for Matchings

Theorem 5.2: König’s Theorem

If graph G = (V, E) is bipartite, then

max{|M | : M is a matching} = min{|S| : S ⊆ V is a vertex cover}

Comment 5.1

The above theorem does not hold for a general graph.
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For a general graph G = (V, E), let A ⊆ V , and let

oc(G−A) = # of odd components of G−A

where odd components are components with odd number of nodes. Let H1, . . . , Hk be the odd components
of G−A, where k = oc(G−A).

A

H1 Hk· · ·

· · ·

Odd components

Even components

Discovery 5.1

We observe that for any matching M and any Hi,

|M ∩ E(Hi)| ≤
|V (Hi)− 1|

2

This implies that in any Hi, there is at least one node that is either M -exposed, or matched by M to
a node in A, and thus the number of such nodes ≤ |A|. Therefore, the number of M -exposed nodes is
≥ k − |A|. As a result,

|M | ≤ n− (k − |A|)
2 = 1

2(n− oc(G−A) + |A|)

5.1.1 Tutte-Berge Formula

Theorem 5.3: Tutte-Berge Formula

We have
ν(G) = minA⊆V

1
2(n− oc(G−A) + |A|)

We call a set A ⊆ V attaining the minimum on the RHS a Tutte-Berge set.
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Note 5.1

We note that

• If G is a cycle of 2k + 1 nodes, then ν(G) = k, and A = ∅ is a Tutte-Berge (TB) set proving TB
formula in this case;

• If S ⊆ V is a vertex cover of G, then taking A = S. G − S consists of singleton components, so
oc(G− S) = |V | − |S|, so TB formula gives

1
2(n− oc(G− S) + |S|) = |S|

so TB formula gives |S| as an upper bound on ν(G).

Corollary 5.1

G has a perfect matching if and only if

oc(G−A) ≤ |A| ∀A ⊆ V

Basic Operations: Shrinking an odd cycle C = (VC , EC). In other words, identify nodes of C or con-
tracting C.

v1 v2

v3

u1 u2

C
=⇒

C

u1 u2

The resulting graph after shrinking C in G we denote it as G′ = G×C, which has nodes (V −VC)∪{C}
and edges E − Ec, with the convention that an edge ab ∈ E, where a /∈ Vc and b ∈ Vc is now there as egde
aC ∈ E(G× C).

Lemma 5.1

Given a graph G, let C be an odd cycle in G and let M ′ be a matching in G × C. Then, M ′ can be
extended to a matching M in G such that the number of M -exposed nodes in G is at most the number
of M ′-exposed nodes in G× C.

Proof. If C is M ′-exposed in G × C, pick a matching of size |C|−1
2 from EC and add it to M ′. Else if C is

M ′-covered in G × C, say (u, c) ∈ M ′, which is equivalent to saying that edge uv (v ∈ C) of G is a path.
Then C − {v} has |C| − 2 edges, and contains no node incident to M ′, thus we can take a matching of size
|C|−1

2 in C − {v} and add this to M ′.
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Lemma 5.2

From the proof of the above lemma, we can see that

ν(G) ≥ ν(G× C) + |C| − 1
2

for any odd cycle C in G.

5.1.2 M-alternating Trees

Let M be our current matching. We will use M -alternating tree to efficiently find an M -augmenting path:
Pick an M -exposed node r, and build a tree T rooted at r. Note that if there exists no M -exposed node,
then we have already found a perfect matching, so we are done. Hence we may assume that such a node r

exists.

Definition 5.1: Level

The level of a node v ∈ T is the number of edges on r ⇝ v path in T .

Let B(T ) be the nodes at even level and let A(T ) be the nodes at odd level. At each point v, we consider
some edge vw where v ∈ B(T ). Different things can happen:

1. If w is M -exposed, then the r-v path in T union with {vw} is an M -augmenting path, so we can use
this to augment M and restart the process. We call this

Use vw to augment M

2. If w is M -covered and w /∈ V (T ), then we

Use vw to extend T

Namely, we add edge vw and wz ∈M to tree T .

Note that z /∈ V (T ) because otherwise z would have two edges of M incident to it.

3. If w is M -covered and w ∈ A(T ). We will talk about this later.

4. If w is M -covered and w ∈ B(T ). Now v-w in T union with {vw} creates an odd cycle. Also more on
this later.

Comment 5.2

Suppose for now that case 4 never occurs (as is in the case for bipartite graphs, who does not have odd
cycles).

Note 5.2

We note that

1. Every r ⇝ v path in T , where v ∈ T , is M -alternating.

66



2. Every v ∈ T , v ̸= r, is M -covered.

3. |B(T )| = |A(T )|+ 1.

Definition 5.2: Frustrated

Given a matching M and an M -alternating tree T , we say that T is frustrated if for all v ∈ B(T ) and
all edges vw ∈ E, we have w ∈ A(T ).

Lemma 5.3

Let G has a mataching M and an M -alternatong tree T that is frustrated, then G does not have a
perfect matching.

Proof. Every node v ∈ B(T ) is a singleton component in G−A(T ), so

oc(G−A) ≥ |B(T )| > |A|

and thus G cannot have a perfect matching.

Lemma 5.4

Let M be a matching in G. Suppose T1, . . . , Tk are M -alternating trees that are all frustrated, node-
disjoint, and together cover V , then, because only the roots of the trees are M -exposed, we have

|M | = n− k

2

Moreover, taking A =
⋃k

i=1 A(Ti), we will get

|M | = 1
2(n− oc(G−A) + |A|)

which implies |M | = ν(A), and so A is a TB set.

Proof. Exercise.
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5.1.3 Sketch of Algorithm for Finding Perfect Matching in a Bipartite Graph

We have the following algorithm for findint the perfect matching in a bipartite graph as a result of method
of constructing alternating trees.

1 M ← ∅;
2 while exists M -exposed node do
3 Pick an M -exposed node r;
4 Set T = ({r},∅);
5 while ∃vw ∈ E such that v ∈ B(T ) and w /∈ V (T ) do
6 if w is M -exposed then
7 we “use vw to augment M”;
8 go to the next iterate of the outer while loop;

9 if w is M -covered and w /∈ V (T ) then
10 We “use vw to extend T”;

11 [If we are ever here] Terminate and return G does not have a perfect matching.

12 return M

Algorithm 7: (Sketch) Finding Perfect Matching in a Bipartite Graph

Lecture 19 - Thursday, November 20

Recall the construction of our M -alternating tree: at each point v, we consider some edge vw where
v ∈ B(T ). The fourth case that can happen is:

w is M -covered and w ∈ B(T ). Now v-w in T union with {vw} creates an odd cycle

In this case, we can shrink the odd cycle present in the M -alternating tree and obtain a valid M -alternating
tree for the contracted graph. We call this process

Use vw to shrink, update M and tree T

Definition 5.3: Blossom

The odd cycle described above in a M -alternating tree is called a blossom.

Here is a formalized statement of what we will do when we find a blossom:
1 Set G′ ← G× C;
2 Set M ′ ←M − EC ;
3 Set T ′ ← tree in G′ with edge set ET − EC ;

We claim that after the above operation, M ′ is a matching in G′, T ′ is an M ′-alternating tree in G′,
and C ∈ B(T ′).
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Definition 5.4: Derived Graph

Let G′ be obtained from G = (V, E) by a sequence of odd-cycle shrinkages. We call G′ a derived
graph of G.

• Each node v of G′ corresponds to a set S(v) of nodes of G (all nodes that has been contracted to
form v). If v ∈ V , then S(v) = {v}, otherwise we call v a pseudo-node.

Note 5.3
If v = C, and G′ = G′′ × C, then SG′(v) =

⋃
w∈C SG′′(w).

• The S(v)-sets partition V ;
• |S(v)| is odd for all v ∈ VG′ .

Lemma 5.5: Generalization of Lemma 5.3

Let G′ be a derived graph of G, M ′ be a matching in G′, and T ′ be an M ′-alternating tree in G′

such that no node of A(T ′) is a pseudo-node. If T ′ is frustrated in G′, then G does not have a perfect
matching.

Proof. Take A = A(T ′). For each v ∈ B(T ′) we get S(v) as an odd component of G−A. Also, A ⊆ V (since
every v ∈ A(T ′) is a node of G), so since oc(G − A) ≥ |B(T ′)| > |A(T ′)| = |A|, G does not have a perfect
matching.

5.1.4 Edmonds’ Blossom Algorithm for Perfect Matching

1 Given a graph G and a matching M of G;
2 Initialize G′ ← G, and M ′ ←M ;
3 if exists no M ′-exposed node in G′ then
4 return perfect matching M ′

5 Let r be an M ′ exposed node, set T = ({r},∅);
6 while exists vw ∈ EG′ , v ∈ B(T ), w /∈ A(T ) do
7 if w is M ′-exposed then
8 we “use vw to augment M”;
9 extend M ′ to a matching M of G;

10 Back to line 2;

11 else if w is M ′-covered, w /∈ V (T ) then
12 we “use vw to extend T”, back to line 6;

13 else if w is M ′-covered, w ∈ B(T ) then
14 we “use vw to shrink, update M ′ and tree T”, back to line 6;

15 else
16 We satisfies conditions of Lemma 5.5, so we terminate and report G does not have a perfect

matching.

Algorithm 8: Edmonds’ Blossom Algorithm for Perfect Matching
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Comment 5.3

On line 9, why do we always go back to the original graph? Because otherwise, we cannot guarantee
that there exists no pseudo-node in the odd level of the tree we build.

Theorem 5.4

The Blossom Algorithm terminates after O(n) augmentations, O(n2) shrinking steps, and O(n2) tree-
extension steps. It also correctly determines if G has a perfect matching.

Proof. Proof of correctness is already covered in Lemma 5.5. We will only consider runtime here.
Each augmentation increases the size of our matching, and thus there are O(n) augmentations, this

is pretty clear. Between two consecutive augmentations,

• Each shrinkage decrement the size of V (G′), leaves |V (T )c| untouched,

• Each tree extension decrement |V (T )c|, leaves |V (G′)| unchanged,

each of which can happen at most n times, and each operation does not “undo” what the other one has done.
Therefore, there are at most O(n) shrinkages and tree extensions between two consecutive augmentings,
giving us O(n2) shrinkages and tree extensions steps overall.

Lemma 5.6

Let G′ be a derived graph G, M ′ be a matching in G′ and T ′
1, . . . , T ′

k be M ′-alternating trees in G′

such that

1. each T ′
i is frustrated in G′, and every node in A(T ′

i ) is a node of G;

2. T ′
1, . . . , T ′

k are vertex-disjoint;

3. M ′ contains a perfect matching of G′ − (V (T ′
1) ∪ · · · ∪ V (T ′

k)).

Let M be a matching of G obtained by extending M ′, then

|M | = n− k

2

and A =
k⋃

i=1
A(T ′

i ) is such that

|M | = 1
2(n− oc(G−A) + |A|)

Therefore, M is a max-size matching, and A is a TB set (and TB formula holds).

Proof. By definition, only roots of T ′
1, . . . , T ′

k are M ′-exposed, so M has ≤ k exposed nodes and |M | ≥
(n− k)/2. Every v ∈

⋃k
i=1 B(T ′

i ) gives rise to an odd component in G−A, so

oc(G−A) =
k∑

i=1
B(T ′

i ) =
k∑

i=1
(1 + |A(T ′

i )|) = |A|+ k
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this implies that
1
2(n− oc(G−A) + |A|) = n− k

2

Hence we must have |M | = 1
2(n− oc(G−A) + |A|).

5.1.5 Consequence of Tutte-Berge Formula

Definition 5.5: Inessential

We say that a node v is inessential if there is a maximal matching M such that v is M -exposed.

Definition 5.6: Essential

If v is not inessential, then v is essential.

Lemma 5.7

Let A be a Tutte-Berge set, then every node in A is essential.

Proof. We argue that after deleting any vertex in A, the maximal-size matching is going to decrease. Let
v ∈ A, consider G′ = G− {v} and A′ = A− {v}, then

oc(G′ −A′) = oc(G−A)

As a result,

ν(G′) ≤ 1
2(|V (G′)| − oc(G′ −A′) + |A′|)

= 1
2(|V (G)| − 1− oc(G−A) + |A| − 1)

= 1
2(|V (G)| − oc(G−A) + |A|)− 1

= ν(G)− 1

by Tutte-Berge Formula, so v is essential.
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5.2 Min-Cost Perfect Matching

Lecture 20 - Tuesday, November 25

Given undirected graph G = (V, E) and edge costs {ce}e∈E . We want to find a perfect matching
with the minimum costs c(M) =

∑
e∈M ce, if a perfect matching exists.

Here is the LP-relaxation:

min
∑
e∈E

cexe s.t.
x(δ(v)) = 1 ∀v ∈ V

x ≥ 0
(P)

which has the dual:
max

∑
v∈V

yv s.t. yu + yv ≤ ce ∀e ∈ E (D)

5.2.1 Bipartite Graphs

Using network flows theory and LP theory, we know that

• (P) is feasible if and only if G has a perfect matching.

• (P) is feasible implies that (P) has an optimal solution, and the optimal value of (P) is equal to the
cost of the min-cost perfect matching (i.e., LP (P) is tight).

Note 5.4

Observe by LP theory:

• It is easy to find a dual feasible solution y;

• A perfect matching M is a min-cost perfect matching if and only if there exists a dual feasible y

such that M is a perfect matching using only edges in

E=(y) := {uv ∈ E : yu + yv = cuv}

Therefore, here is the idea:

1. Start with a dual feasible solution y

2. Find a perfect matching in E=(y). If we do not find a perfect matching, then we have an M -
alternating tree T that is frustrated in E=(y).

See below for an example, we have two cases:

Case 1, T is frustrated in G In this scenario, G does not have a perfect matching.
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Case 2, T is not frustrated in G This means that there exists vw ∈ E − E= where v ∈ B(T ) and
w /∈ V (T ). Here, we cannot conclude that G does not attain a perfect matching, but rather we know that
the dual solution we obtained is not the right one. Hence we wish to change the dual solution y such that

1. make “progress” by increasing dual objective value, while

2. maintaining the dual feasibility of y and

3. keeping all edges of M and T in E=(y).

Algorithm 5.1

This is what we are going to do: for suitable ε > 0, we increase yv by ε for all v ∈ B(T ) and decrease
yv by ε for all v ∈ A(T ). This way,

1. All edges in T remain tight under the new dual solution ynew;

2. For edges uv ∈ E, where u, v /∈ B(T ), the constraint yu + yv ≤ cuv still holds.

3. For edges vw ∈ E, where v ∈ B(T ) and w /∈ V (T ), the value yv + yw increases, this suggests that
we need to take

ε := min
{

cvw − yv − yw : vw ∈ E, v ∈ B(T ), w /∈ V (T )
}

(Change y)

Since T is not frustrated in G, there exists at least one of those edges, so ε > 0.

Comment 5.4

T is frustrated implies that if vw ∈ E with v ∈ B(T ) and w /∈ V (T ), then vw /∈ E=(y).

Example 5.1

Flesh out this min-cost perfect matching algorithm for bipartite graphs.

5.2.2 General Graphs

The earlier LP is no longer a good LP, consider

1

100

100

100 1

1

1

1

1
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We can set xe = 1/2 for all e ∈ △, which is feasible for (P), so OPT(P ) ≤ 3. However, any perfect matching
must use one of the edges with ce = 100, and in fact OPT(P ) = 102.

We strengthen the LP as follows:

min
∑
e∈E

cexe s.t.

x(δ(v)) = 1 ∀v ∈ V

x ≥ 0
x(δ(S)) ≥ 1 ∀S ⊆ V : |S| odd

(P’)

We denote the set O := {S ⊆ V : |S| ≥ 3 odd}. This LP has the dual

max
∑
v∈V

yv +
∑
S∈O

yS s.t.
yu + yv +

∑
S∈O:uv∈δ(S) yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ O
(D’)

Again follow the similar template, we know that a perfect matching M and dual solution y satisfy
Complementary Slackness if

• e = uv ∈M implies that yu + yv +
∑

S∈O:uv∈δ(S) yS = cuv;

• yS > 0 for some S ∈ O implies that |M ∩ δ(S)| = 1.

Again, define E=(y) analogously:

E=(y) = {uv ∈ E : yu + yv +
∑

S∈O:uv∈δ(S)

yS = cuv}

Example 5.2

Consider the following example (encounter while trying to find a perfect matching in E=(y)).

4 2
3 1

4 3

4

4 6

1← yv

1v 2 u

2

odd level, A(T )
even level, B(T )

root

E= −M

M (also E=)
/∈ E=

/∈ V (T )

T

Notice that T is frustrated in E=, but not frustrated in G. We can increase yv,∀v ∈ B(T ) and decrease
yv,∀v ∈ A(T ) by ε. Observe that edge vu will become tight first, and it limits ε = 1/2:
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4 2
2.5 0.5

4 3

4

4 6

1.5

1.5 2.5

2

=⇒

0← yv

2.5 3.5

2

after obtaining an odd cycle, we shrink. However, the shrink operation is now as follows:

‘‘Use vw to shrink, update M and tree T, and edge costs’’

1. Let C be the odd cycle, formed by vw path in T union with {vw};

2. Update G′ ← G× C, M ′ ←M − E(C), T ′ ← T − E(C);

3. For all uv ∈ δ(C) with v ∈ C, update cost c′
uv ← c′

uv− yv (edges e ∈ E−EC remain unchanged).
This ensures that tight edges in E= − EC remain tight in G′.

4. Set yC ← 0, which we have to maintain yC ≥ 0 because of the ‘non-negativity of odd-sized sets’
constraint.

How do we get back to the original graph from the derived graph?

Proposition 5.1

Let (G′, C ′) be obtained from (G, C) by shrinking an odd cycle C of tight edges with respect to dual
solution y that is feasibile for (G, C). Let M ′ be a perfect matching for G′ and y′ be a dual feasibile
solution for (G′, C ′) such that (a) M ′ and y′ satisfy Complementary Slackness (for (G′, C ′)) and (b)
y′

C ≥ 0, then

1. M ′ can be expanded to a perfect matching M in G;

2. y′ can be extended to a dual feasibile solution y for (G, C) by defining

(a) yv =

 y′
v for all v ∈ VG′ , v /∈ C

yv for all v ∈ C

(b) yC = y′
C ;

(c) For all odd sets S ⊆ VG′ , let S be the corresponding odd set in G, set yS = y′
S (All other

sets S ∈ O get yS = 0).
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3. M , y defined above satisfy Complementary Slackness conditions (so M is a min-cost perfect
matching for G and y is an optimal dual solution for (G, C)).

Lecture 21 - Thursday, November 27

Note 5.5

Important invariant (I) that we will maintain:

In a derived graph G′, the only y-variables that will be positive are the y′
vs corresponding

to nodes of G′ (which could be pseudo-nodes, i.e., non-singleton odd sets of V ).

In other words, we will never set yS > 0 for a non-singleton set S of V (G′).

Issues and Solutions

Issue 1: When we augment, we may not be able to expand all the way back to the original graph G.
(Because there could be a pseudo-node v with yv > 0, which gives an odd set S ⊆ V (G) with yS > 0
and |S| > 0, violating our invariant (I)).

Solution. We only expand a pseudo-node v where yv = 0, otherwise we keep working in the derived graph.

Issue 2: Augmentation in derived graph could create pseudo-nodes of odd level (recall that we increase
the values for nodes in B and decrease the values for nodes in A, see algorithm 5.1).

Solution. This suggests that when we “change y”, the bounds on ε are impsoed by

1. B(T )–to–C(T )c edges;

2. B(T )–to–B(T ) edges;

3. yV ≥ 0 for all pseudo-nodes v ∈ A(T ).

Hence we need one additional operation: Expand odd pseudo-node. See below for an example:

u

w

C

r

a

Suppose odd pseudo-node C has

• incoming edge (from parent) incident to u ∈ C;

• outgoinh edge (to child) incident to w ∈ C.
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Note 5.6

We know that in the cycle, all the edges are tight (this is why we contract the cycle). Hence when we
expand the pseudo-node, we can pick which (|C| − 1)/2 edges of C to add to our matching so that the
new tree remains an alternating tree with respect to the new matching (and we do not increase the
number of exposed nodes).

We add even-length u-w path in C to T , extend matching M ′ in G′ to a matching after opening up
C. For every edge st ∈ δ(C), s ∈ C, we update c′

st ← c′
st + ys (for edges of C, they appear with their costs

c′
e when C was shrinked). We call the above process

‘‘ Expand odd pseudo-node, update G′, M ′, tree T ′ and edge costs c′ ’’

5.2.3 Blossom Algorithm for min-cost Perfect Matching

1 Start with a feasible dual solution y such that yS = 0 for all non-singleton S ∈ O. Let G′ ← G,
c′ ← c. Let M ′ be some matching in E=(y). Maintain that y is dual feasible, M and y satisfy CS
conditions;

2 if M ′ is a perfect matching then
3 Extend M ′ to a perfect matching of G, y to a dual solution for (G, c) such that M and y satisfy

CS conditions;
4 Terminate because M is a min-cost perfect matching;

5 Let r be an M ′-exposed node, set T ← ({r},∅);
6 while true do
7 if exists vw ∈ E=, v ∈ B(T ), w /∈ V (T ) then
8 use vw to augment;
9 Goto line 2;

10 if exists vw ∈ E=, v ∈ B(T ), w is M ′-covered, w /∈ V (T ) then
11 use vw to extend T ;

12 if exists vw ∈ E=, v, w ∈ B(T ) then
13 use vw to shrink, update M ′, T, c′, and dual solution y;

14 if exists pseudo-node v ∈ A(T ) with yv = 0 then
15 expand v, update G′, M ′, tree T, costs c′, dual and solution y;

16 if T is frustrated in G′, and A(T ) has no pseudo-node then
17 We stop, return G has no perfect matching and (P) is infeasible.

18 break;

19 If we are here, so every pseudo-node v ∈ A(T ) has yv > 0, T is not frustrated in G′ or T has an odd
pseudo-node, then we change y.

Algorithm 9: Blossom Algorithm for min-cost Perfect Matching
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Theorem 5.5

The Blossom Algorithm for min-cost perfect matching terminates after O(n) augmentations, and O(n2)
tree-extending, shrinking, expanding, and dual change operations. At termination,

1. it returns that G has no perfect matching if and only if (P) is infeasible;

2. it returns a perfect matching M and dual feasible y such that M and y satisfy Complementary
Slackness conditions , so M is a min-cost perfect matching.

Corollary 5.2

Feasible region of (P’) is

conv
({

xM : M is a perfect matching of G
})

and this is known as the perfect-matching polytope.

Proof of Theorem 5.5. It is clear that there are O(n) augmentations, as |M | only goes up after each aug-
mentation, and this can only happen at most n times. We consider iteration between two consecutive
augmentations. We will show that there are ≤ n operations of each type between them.

Every dual change leads to a shrink(S), extend(E), augment(A), or expand(Exp) operation in the
next iteration. Hence it suffices to bound (S), (E), and (Exp) steps.

1. Every (S) creates an even pseudo-node;

2. Every (Exp) operation applies to an odd pseudo-node.

For (S) operation, consider φ =
∑

even pseudo-node v |S(v)|, we note that

• 0 ≤ φ ≤ n;

• Every (S) step increases φ by ≥ 1;

• (Exp) or (E) do not decrease φ, so there are ̸= n (S) steps.

For (E) and (Exp) operations: consider φ′ =
∑

odd pseudo-node v |S(v)|+
∑

v /∈T

(
|S(v)| − 1

3
)
.

• Each (Exp) decreases φ′ by ≥ 2/3, since (Exp) either applied to v either adds nodes to B(T ) or
we have a picture below:
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a

b

a

b

and decrease in |S(v)| is ≥ 2/3 more than incease in
∑

u/∈T |S(u)|;

• Each (E) decreases φ by ≥ 1/3 since one node not in V (T ) gets added to B(T )new;

• (S) does not increase φ′.

• Hence since 0 ≤ φ ≤ n, there are at most O(n) (Exp) and (E) steps between two augmentations.

Lecture 22 - Tuesday, December 02

5.3 T -join

Definition 5.7: T -join

Let G = (V, E) be a graph, {ce}e∈E be edge costs, and T ⊆ V with |T | even. A T -join in G is a set
F ⊆ E such that |δ(v) ∩ F | is even for v /∈ T and odd for v ∈ T .

The Min-cost T -join problem is asking to find a T -join of minimum total cost.

Example 5.3

For T = ∅, a T -join is F ⊆ E that induces even degree for every v ∈ V .

Definition 5.8: Eulerian

We say that G = (V, E) is Eulerian if |δ(v)| is even for all v ∈ V .

Note 5.7

Here is a fact, if G = (V, E) is Eulerian, then E can be decomposed into edge-disjoint cycles.

Result 5.1

If F is a ∅-join with c(F ) < 0, then G has a negative-cost cycle. Hence solving min-cost T -join
with T = ∅ allows us to detect if G has a negative-cost cycle.
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Discovery 5.2

Let J1 be T1-join and J2 be T2-join where T1, T2 ⊆ V and |T1|, |T2| even. Then J1∆J2 is a (T1∆T2)-join.

Proof. Exercise.

Example 5.4

Let T = {a, b}, then a minimal T -join is a simple a-b path in G. Hence if c ≥ 0, then a min-cost T -join
is a shortest a-b path.

Let F ⊆ E be a T -join, let P be a simple a-b path contained in F . Then, by the above
observation, F∆P = F − P is a T∆{a, b} = ∅-join.

So if G has no negative-cost cycles, then an optimal T -join is a shortest a-b path.

Lemma 5.8

Every (inclusion-wise) minimal T -join is a union of |T |/2 edge-disjoint simple paths, every path joins
two nodes of T , and these paths do not share any end-points.

Proof. Clearly, the union of the states paths is a T -join. Let J be a minimal T -join. Let H be a component
of (V, J). Then H must contain some u ∈ T since J is minimal, and so it must also contain some other
node v ∈ T because otherwise it would have an odd number of nodes of odd degrees. Let P be some simple
u-v path in H, so P is a {u, v}-join. Then J∆P = J − P is a T∆{u, v} = T − {u, v}-join. Repeating this
process, we can find simple paths P1, . . . , P|T |/2 of the stated form contained in J . Hence P1 ∪ · · · ∪ P|T |/2

is a T -join. Recall that J is a minimal T -join, so we are done.

Corollary 5.3

Let c ≥ 0, there is an optimal T -join that is the union of |T |/2 edge-disjoint shortest paths, which join
the nodes of T in pairs.

5.3.1 Solving T -join via Matching (c ≥ 0)

Therefore, solving the min-cost T -join problem can be done via solving for the min-cost matching problem.

Definition 5.9: Metric Completion

Given G = (V, E) a graph, edge costs {ce}e∈E , the metric completion of (G, c) is (G, c) where
G = (V, E) is the complete graph on V , and cu,v = shortest u-v distance in G for all u, v ∈ V .

1 Consider G[T ] = (T, E(T ));
2 Find min-cost perfect matching M in G[T ];
3 Let P1, . . . , P|M | be the paths in G corresponding to egdes in M ;
4 return P1∆ · · ·∆P|M |

Algorithm 10: Algorithm for min-cost T -join (c ≥ 0)
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Theorem 5.6

We have the following result:

1. c(M) is equal to the cost of the optimal T -join;

2. J := P1∆ · · ·∆P|M | is a min-cost T -join.

5.3.2 Arbitrary c Case

Let N = {e ∈ E : ce < 0} and let TN = {v ∈ V : |δ(v) ∩N | is odd}. By construction, N is a TN -join. Let J

be a T -join, so by observation, J∆N is a (T∆TN )-join. Also,

c(J) = c(J ∩N) + c(J −N)

= c(N) +
[
− c(N − J) + c(J −N)

]
= c(N) +

∑
e∈J∆N

|ce|

This suggests that J is a minimum c-cost T -join if and only if J∆N is a minimum |c|-cost (T∆TN )-join.
Hence we have the following algorithm.

1 Find N and TN ;
2 Find a min |c|-cost (T∆TN )-join J ′;
3 return J ′∆N (which is a (T∆TN )∆TN = T -join)

Algorithm 11: Algorithm for min-cost T -join (arbitray c)
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Here is an example running the algorithm:

r

a b

c

d e

s

2

−2
−3

1

2

2

2
5

1 6

ordinary vertex

TN

T

e with ce ≥ 0

e with ce < 0

Identifying T∆TN , and changing all edge costs to their absolute values, we have the following picture:

r

a b

c

d e

s

2

2
3

1

2

2

2
5

1 6

ordinary vertex

T∆TN

e with ce ≥ 0

To find the minimum |c|-cost (T∆TN )-join, we have the following diagram proceeded as described in chapter
5.3.1:

a b

c s

4

2

2

5

4 3
T∆TN

e not matched

e matched

Using this to trace back to the edges in the original graph, we obtain the following minimum c-cost T -join:

r

a b

c

d e

s

2

−2
−3

1

2

2

2
5

1 6

T

minimum c-cost T -join
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6 Exercises

Exercises I collected from anywhere everywhere. glhf!

6.1 Greedy Algorithm, Minimum Spanning Trees, and Matroids?

Exercise 6.1

Suppose that for every cut of the graph, there is a unique light edge crossing the cut. Show that the graph
has a unique minimum spanning tree. Does the converse hold? If not, please give a counterexample.

Proof. Fix any cut (S, V \S) and let e be its unique light edge, we claim that e is contained in every minimum
spanning tree of G.

Proof of claim: Take an arbitrary MST T . If e ∈ T , then we are done, if not, we consider T + e, who
contains exactly one cycle C. We know that there is another edge f ∈ C with strictly larger cost since
e is the unique light edge, replacing f with e yields us a strictly cheaper spanning tree, a contradiction.

Now we can use this to prove that every minimum spanning tree is unique. Conversely, the statement does
not hold. Here is a counterexample:

A B

C

1

11.1

done.

Exercise 6.2

Show that the dual “matroid” is a matroid. Recall that given a matroid M = (U, I), then dual matroid
is defiend as

M∗ = (U, I∗ = {J ⊆ U : U − J contains an M -basis})

Exercise 6.3

Give a counterexample to show that an independent system with all maximal independent sets of the
same size may not be a matroid.

Proof. Let the ground set U = {1, 2, 3, 4} and define I to be

I := {{∅}, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}

Clearly (U, I) is not a matroid because it does not have the exchange property (we can take A := {1} and
B := {3, 4} for example).
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Exercise 6.4

A family F of sets is said to be laminar if, for any two sets A, B ∈ F , we have that either (i) A ⊆ B, or
(ii) B ⊆ A or (iii) A ∩B = ∅. Suppose that we have alaminar family F of subsets of E and an integer
k(A) for every set A ∈ F . Show that (E, I) defines a matroid (a laminar matroid) where:

I = {X ⊆ E : |X ∩A| ≤ k(A) for all A ∈ F}.

Exercise 6.5

The dual matroid of a graphic matroid is called a cographic matroid. What are the independent sets,
bases and cycles of these matroids?

Exercise 6.6

Let (E, I) be a matroid, and F ⊆ E.

1. F is called a closed set (or flat) if it has the following property:

r(F ∪ {e}) > r(F ), ∀e ∈ E \ F.

Describe the closed sets of graphic matroids using graphtheoretical terms.

2. F is said to be inseparable if it cannot be partitioned into two (non-empty) subsets F1, F2 such
that

r(F ) = r(F1) + r(F2).

Prove that the inseparable sets of a graphic matroid are exactly those sets F of edges for which
the subgraph G′ = (V (F ), F ) is 2-node-connected.

Remark. A (connected) graph is called 2-node-connected (or simply 2-connected) if it remains
connected after deleting any node and all the adjacent edges.

Exercise 6.7

Parallel extension of an element

Let M = (N, I) be a matroid and let e ∈ N be a non-loop. Introduce a new element f /∈ N , and define
a family I ′ of subsets of N ∪ {f} by declaring X ⊆ N ∪ {f} independent if and only if

f /∈ X and X ∈ I or f ∈ X and (X \ {f}) ∪ {e} ∈ I.

We call the resulting set system M ′ = (N ∪ {f}, I ′) the parallel extension of M at e.

1. Prove that M ′ is a matroid. (10 marks)

2. Describe the bases and circuits of M ′ in terms of the bases and circuits of M . In particular, show
that: (10 marks)
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• every basis of M ′ is obtained from a basis of M either by keeping it as is (if it contains e) or
by replacing e with f ; and

• the circuits of M ′ are precisely:

– all circuits of M that do not contain e;
– the 2-element set {e, f}; and
– for every circuit C of M with e ∈ C, the set (C \ {e}) ∪ {f}.

3. Suppose M is representable over a field F by a matrix A whose columns are indexed by N . Let ae

be the column of A corresponding to e, and let A′ be the matrix obtained from A by appending
a new column labelled f that is equal to ae. Prove that A′ is a representation of M ′ over F. (5
marks)

Exercise 6.8

Matchings via matroid intersection

Let G = (V = L ∪R, E) be a bipartite graph with bipartition (L, R). Consider the following indepen-
dence systems on the ground set E of edges:

I1 := {F ⊆ E : no two edges in F share a vertex in L},

I2 := {F ⊆ E : no two edges in F share a vertex in R}.

We can show that M1 = (E, I1) and M2 = (E, I2) are matroids and a subset F ⊆ E is a matching in
G if and only if F is independent in both M1 and M2. Let r1 and r2 be the rank functions of M1 and
M2, respectively. You may use without proof the matroid intersection theorem in the form

max{|I| : I ∈ I1 ∩ I2} = minX⊆E

(
r1(X) + r2(E \X)

)
.

Use the Matroid Intersection theorem to prove Hall’s marriage theorem: there exists a matching that
covers every vertex in L if and only if

|N(S)| ≥ |S| for every S ⊆ L,

where N(S) denotes the set of neighbors of S in R.

Proof. Consider any minimizer A for minA⊆E

(
r1(A) + r2(E −A)

)
. Define

LA := {v ∈ L : δ(v) ∩A ̸= ∅}

RE−A := = {v ∈ R : δ(v) ∩ (E −A) ̸= ∅}

For v ∈ L \ LA, we know that there exists e = vw ∈ E − A where w ∈ RE−A. This suggests that
|L \ LA| ≤ |N(L \ LA)| ≤ |RE−A|. Therefore,

max{|I| : I ∈ I1 ∩ I2} = |LA|+ |RE−A| ≥ |LA|+ |L \ LA| = |L|

as desired.

85



Exercise 6.9

Minimum distance via circuits

Let F be a field and let H be an m× n matrix over F. Consider:

• the linear code
C := {x ∈ Fn : Hx = 0},

whose parity-check matrix is H;

• the matroid M(H) on ground set N = {1, . . . , n} whose independent sets are those index sets of
columns of H that are linearly independent over F.

For a vector x ∈ Fn, let supp(x) := {i ∈ N : xi ̸= 0} and let wt(x) := | supp(x)| denote its (Hamming)
weight. The minimum distance of C is

d(C) := min{wt(x) : x ∈ C, x ̸= 0}.

1. Prove that if x ∈ C is a nonzero codeword with support S, then S contains a circuit of M(H).
Deduce that (10 marks)

d(C) ≥ min{|C| : C is a circuit of M(H)}.

2. Prove the converse inequality: show that if S ⊆ N is a minimal subset of columns of H that is
linearly dependent, then there exists a nonzero codeword x ∈ C whose support is contained in S.
Conclude that (10 marks)

d(C) = min{|C| : C is a circuit of M(H)}.

3. Work over the field F = F2 and consider the 3× 7 matrix (5 marks)

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 .

This is a parity-check matrix of the binary [7, 4] Hamming code. By analysing the circuits of
M(H), compute the minimum distance d(C) of this code. (You do not need to list all circuits,
but you must justify that no smaller circuit exists.)

6.2 Flows and Cuts

Exercise 6.10

A conference organizer wants to set up a review plan. There are m submitted papers and n reviewers.
Each reviewer has made p papers as prefer to review. Each paper should have at least q review reports.
Find a method to determine whether such a review plan exists or not.
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Proof. We construct a flow network G = (V, E) as follows.

V = {s, t} ∪ {r1, . . . , rn} ∪ {p1, . . . , pm}.

Edges and capacities:

• For each reviewer i, add edge (s, ri) with capacity c(s, ri) = p.

• For each preferred pair (reviewer i prefers paper j), add edge (ri, pj) with capacity c(ri, pj) = 1.

• For each paper j, add edge (pj , t) with capacity c(pj , t) = q.

Compute a maximum s–t flow f . A feasible review plan exists iff |f | = mq.

Exercise 6.11

Suppose there exist two distinct maximum flows f1 and f2. Show that there exist infinitely many
maximum flows.

Proof. Define fλ = λf1 + (1− λ)f2 for λ ∈ [0, 1], we can verify that all fλ is a feasible flow.

Exercise 6.12

Consider a flow network G = (V, E) with a source s, a sink t and nonnegative capacities. Suppose a
maximum flow f is given. If an arc is broken, find a fast algorithm to compute a new maximum flow
based on f . A favorite algorithm will run in O(|E| log |V |) time.

Exercise 6.13

Consider bipartite graph G = (U, V, E). Let H be the collection of all subgraphs H that for every u ∈ U ,
H has at most one edge incident to u. Let E(H) denote the edge set of H and I = {E(H) | H ∈ H}.
Show that (a) (E, I) is a matroid and (b) all matchings in G form an intersection of two matroids.

Exercise 6.14

Prove or disprove (by counterexample) following statement.

1. If a flow network has unique maximum flow, then it has unique minimum s-t cut.

2. If a flow network has unique minimum s-t cut, then it has unique maximum flow.

3. A maximum flow must associate with a minimum s-t cut such that the flow passes through the
minimum s-t cut.

4. A minimum s-t cut must associate with a maximum flow such that the flow passes through the
minimum s-t cut.

Proof. First is false, here is a counterexample:
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The third and the fourth are correct.

Exercise 6.15

Feasible transshipment via cuts

Let G = (V, E) be a directed graph with edge capacities u : E → R≥0. Each vertex v ∈ V has a
supply/demand b(v) ∈ R such that

∑
v∈V b(v) = 0. We interpret b(v) > 0 as a supply of b(v) units that

must leave v and b(v) < 0 as a demand of −b(v) units that must arrive at v. A transshipment flow is a
function f : E → R≥0 such that

0 ≤ f(e) ≤ u(e) for all e ∈ E,∑
e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e) = b(v) for all v ∈ V.

1. Construct an auxiliary network G′ = (V ′, E′) by adding a super-source s and a super-sink t as
follows: (8 marks)

• For every v with b(v) > 0, add an edge (s, v) with capacity b(v).

• For every v with b(v) < 0, add an edge (v, t) with capacity −b(v).

• Keep all original edges E with their capacities u(e).

Let B :=
∑

v:b(v)>0 b(v) be the total supply. Prove that there exists a feasible transshipment flow
in G if and only if G′ has an s–t flow of value B saturating every edge out of s and into t.

2. For a subset S ⊆ V , define the capacity of the outgoing cut by

c(δ+(S)) :=
∑

e=(x,y)∈E, x∈S, y /∈S

u(e).

Use the max-flow min-cut theorem on G′ to prove the following: (12 marks)

88



Theorem. A feasible transshipment flow exists in G if and only if for every subset S ⊆ V ,∑
v∈S

b(v) ≤ c(δ+(S)).

(Hint: show that any s–t cut in G′ corresponds to some subset S ⊆ V and interpret the cut
capacity.)

3. Specialize the theorem in part (b) to the case where all supplies are at a single vertex s (so
b(s) > 0, b(v) ≤ 0 for v ̸= s) and all demands are at a single vertex t. Show that the condition
reduces to the usual max-flow/min-cut condition between s and t. (5 marks)

Exercise 6.16

Shipping as much as possible before a deadline

Let G = (V, E) be a directed graph with distinct vertices s, t ∈ V . Each edge e = (u, v) has unit
capacity and an integer transit timeτ(e) ∈ {1, 2}. Time is discrete: 0, 1, 2, . . . . We want to send as
many unit packets as possible from s (departing at time 0) to t so that each packet arrives by time T .
Each packet travels along a directed path in G, moving forward one edge at a time according to the
transit times, and at any time step at most one packet may use any given edge.

1. Build the time-expanded network GT = (V T , ET ) as follows: (10 marks)

• For each vertex v ∈ V and time k = 0, 1, . . . , T , create a vertex (v, k) ∈ V T .

• For each edge e = (u, v) ∈ E with τ(e) = 1 and each k with 0 ≤ k ≤ T − 1, add an edge
((u, k), (v, k + 1)) of capacity 1.

• For each edge e = (u, v) ∈ E with τ(e) = 2 and each k with 0 ≤ k ≤ T − 2, add an edge
((u, k), (v, k + 2)) of capacity 1.

• For each vertex v ∈ V and each k with 0 ≤ k ≤ T − 1, add a waiting edge ((v, k), (v, k + 1))
of infinite capacity.

The source is (s, 0) and the sink is (t, T ). Prove that integer ((s, 0), (t, T ))-flows in GT of value
F correspond bijectively to ways of sending F packets from s to t that arrive by time T in the
original dynamic model.

2. Use the max-flow min-cut theorem on GT to show that the maximum number of packets that
can arrive at t by time T is equal to the minimum capacity of an (s, 0)–(t, T ) cut in GT . Give an
interpretation of such a cut as a set of time-stamped edges in the original network whose removal
blocks all packets from meeting the deadline. (10 marks)

3. Assume now that all transit times are τ(e) = 1 and T is fixed. Show that the maximum number
of packets that can arrive by time T is exactly the maximum number of pairwise edge-disjoint s–t

paths of length at most T in G. (Hint: describe the correspondence between such paths and flow
paths in GT .) (5 marks)
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6.3 Matchings

Exercise 6.17

Show that the vertex-cover problem in bipartite graphs can be solved in polynomial-time.

Exercise 6.18

Show that in any graph G = (V, E) (not necessarily bipartite), the size of any maximal matching M

(i.e. a matching M in which one cannot add an edge while keeping it a matching) is at least half the
size of a maximum matching M∗.

Exercise 6.19

Consider a bipartite graph G = (V, E) with bipartition (A, B): V = A ∪ B. Assume that, for some
vertex sets A1 ⊆ A and B1 ⊆ B, there exists a matching MA covering all vertices in A1 and a matching
MB covering all vertices in B1. Prove that there always exists a matching covering all vertices in
A1 ∪B1.

Exercise 6.20

Consider the following 2-person game on a (not necessarily bipartite) graph G = (V, E). Players 1 and
2 alternate and each selects a (yet unchosen) edge e of the graph so that e together with the previously
selected edges form a simple path. The first player unable to select such an edge loses. Show that if G

has a perfect matching then player 1 has a winning strategy.

Exercise 6.21

Deficiency formula for bipartite matchings

Let G = (L ∪ R, E) be a bipartite graph with bipartition (L, R). For a subset S ⊆ L let N(S) denote
its neighborhood in R, and define the deficiency of S by

δ(S) := |S| − |N(S)|.

Let ∆(G) := maxS⊆Lδ(S) be the maximum deficiency.

1. Prove that every matching M in G satisfies (5 marks)

|M | ≤ |L| −∆(G).

(Hint: Fix S ⊆ L and count how many vertices of L can be matched.)

2. Show that there exists a matching M in G with (10 marks)

|M | = |L| −∆(G).

(Hint: You may use Hall’s theorem and/or König’s theorem without proof.)
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3. Deduce the alternative “min–max” form (5 marks)

max{ |M | : M is a matching in G } = minS⊆L

(
|L \ S|+ |N(S)|

)
.

Exercise 6.22

Maximizing matched important vertices

Let G = (L ∪ R, E) be a bipartite graph. Suppose that a subset Limp ⊆ L of the left vertices are
declared important, and the remaining vertices L\Limp are unimportant. We are interested in matchings
that match as many important vertices as possible (we do not care whether unimportant vertices are
matched).

1. For a given matching M , let (8 marks)

sat(M) := |{ℓ ∈ Limp : ℓ is matched in M}|

be the number of matched important vertices. Show that for every subset S ⊆ Limp and every
matching M ,

sat(M) ≤ |Limp \ S|+ |N(S)|.

Conclude that

max{ sat(M) : M is a matching } ≤ minS⊆Limp

(
|Limp \ S|+ |N(S)|

)
.

2. Consider the induced bipartite graph Gimp = (Limp ∪R, Eimp) obtained by deleting all vertices in
L\Limp and their incident edges. Use exercise 6.21 for Gimp to show that there exists a matching
M in the original graph G such that (12 marks)

sat(M) = minS⊆Limp

(
|Limp \ S|+ |N(S)|

)
.

(Hint: start with a maximum matching in Gimp and extend it to a matching in G without
decreasing sat(M).)

3. Give a short interpretation of the formula (5 marks)

max{ sat(M) } = minS⊆Limp

(
|Limp \ S|+ |N(S)|

)
in terms of “how badly Hall’s condition can fail” on the set of important vertices.
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